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Nomenclature
A Helmholtz free energy
Ak Matrix of number of occurrences of molecular groups in molecule k
ACO Ant colony optimization
ADI Absorption-desorption index
AHP Analytic hierarchy process
amn Group-group interaction parameter used in calculation of gi

c

AUPM Augmented property index
AP Augmented penalty
ASOG Analytical Solution of Groups
BB Branch and bound
BM Big-M formulation
bmn Group-group interaction parameter for higher order approximation used in calculation of gi

c

C Vector of concentration of components/molecules
CADD Computer-aided drug design
CAMbD Computer-aided mixture design
CAMD Computer-aided molecular design
CAMPCD Computer-aided molecular, process and control design
CAMPD Computer-aided molecular and process design
CAMRD Computer-aided molecular design for reactions
CAMuD Computer-aided molecular design under uncertainty
CAOS Computer-aided organic synthesis
Cj Cluster for property j
ck Concentration of kth component/molecule
cmn Group-group interaction parameter for higher order approximation used in calculation of gi

c

CoMT Continuous molecular targeting
COSMO Conductor-like Screening Model
D Vector of design variables
DEA Data envelopment analysis
DFO Derivative-free optimization
DFT Density functional theory
di ith design variable
Dj Contributions of second-order groups
E Vector of disturbances
EACO Efficient ACO
EBS Environmentally benign solvent
El Contributions of third-order-groups
EoS Equation of state
ER Equality relaxation
F Vector of objective functions
Fj jth objective function
GA Genetic algorithms
GBD Generalized Benders decomposition
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GDP Generalized disjunctive programming
gl Molecular group l
GXL Gas-expanded liquids
h Vector of equality constraints
HR Hull reformulation
HSS Hammersley sequence sampling
HSTA Hammersley stochastic annealing
IA Interval analysis
IPS In-process solvent
LCVM Linear combination of Huron’s and Michelsen’s mixing rules
LHS Latin hypercube sampling
m Vector of molecular groups
m Takes the values of -1 for acyclic, 0 for monocyclic and 1 for bicyclic compounds
MHV1 First order Huron-Vidal mixing rule
MHV2 Second order Huron-Vidal mixing rule
MIDO Mixed-integer dynamic optimization
MIHDE Mixed-integer hybrid differential evolution
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
MIP Mixed-integer programming
MISQP Trust region sequential quadratic programming algorithm
Mj Number of occurrences of second-order groups of type j
Mk Matrix indicating the group composition of molecule k
MOEGA Multi-objective efficient GA
MOO Multi-objective optimization
Nd Total number of design variables
Ng Total number of molecular groups
Ni Number of occurrences of first-order groups of type i
nl
k Number of occurrences of molecular group l in molecule k

NLP Nonlinear programming
NM Total number of molecules
Nof Total number of objective functions
Np Total number of process design variables
Nw Total number of manipulated variable
Ny Total number of controlled variable
OA Outer approximation
Ol Number of occurrences of third-order groups of type l
ORC Organic Rankine cycle
P Vector of process design variables
Pc Critical pressure
Pjg Contribution of group g in property j
pq qth process design variable
Pr
sat Reduced vapor pressure

PR Peng-Robinson
PSA Pressure swing adsorption
Q Van der Waals group surface
q Vector of inequality constraints
QM Quantum mechanics
QSAR Quantitative structure-activity relationship
QSPR Quantitative structure-property relationship
R Universal gas constant
Rv Van der Waals group volume
RK Redlich-Kwong
RNFA Reaction network flux analysis
SA Simulated annealing
SAFT Statistical Associating Fluid Theory
SOO Single-objective optimization
SPM Stochastic property matching
SPO Stochastic property optimization
SQP Sequential quadratic programming
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SRLP Successive regression and linear programming
Tc Critical temperature
Tr Reduced temperature
TS Tabu search
UNIFAC Universal Quasi-Chemical Functional-group Activity Coefficients
vdW Van der Waals
vdW1f Van der Waals one fluid mixing rule
vPPD Virtual product-process design laboratory
VSA Vacuum swing adsorption
U Vector of uncertain parameters
W Vector of manipulated variables
w Binary variable indicating use of second-order groups
wt2 t2

th manipulated variable
X Vector of state variables
Xi Contributions of first-order groups
Y Vector of controlled variables
yt3 t3

th controlled variable
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Binary variable indicating use of third-order groups
Greek Symbols
gi Activity coefficient of component i
gi
c Combinatorial part of activity coefficient

gi
r Residual part of activity coefficient

«t1 t1
th disturbance parameters

N« Total number of disturbance parameters
vl
k Valence of group l in kth molecule
cj
M(Pj) Molecular property operator of the jth property

cj
ref(Pj) Molecular property operator for a reference value

v Acentric factor

ormalized value of operators
Introduction

The selection of chemicals with properties which are desired in a particular application is a challenging task. A vast number of
compounds may be available that possess suitable characteristics, hence they would all need to be assessed prior to the selection of
the one with the desired behavior. Conventionally, such screening is performed experimentally, with significant challenges
pertaining to the costs and effort required to perform experimental iterations. Computer-aided technologies offer a promising
route to exploit experimental know-how and guide the search for novel and efficient chemicals as they enable the investigation of an
enormous range of options. Such technologies allow the fast, cost-effective, and automated evaluation of a vast number of
characteristics that may lead to highly efficient chemicals. They do not entirely replace experiments. Instead, experimentally
obtained results are exploited to formulate mathematical representations of phenomena that can be used in computer simulation
or optimization and further experiments can then be performed to verify the results of the optimization.

The exploitation of computer-aided technologies for the identification of chemicals has two major requirements:

(a) The exhaustive generation and simultaneous evaluation of a very wide range (millions) of chemicals in order to identify the
ones exhibiting optimum performance by any set of criteria.

(b) The simultaneous consideration of models of sufficiently high fidelity, so that the obtained chemicals are both optimum and
rigorously validated prior to practical implementation at industrially or commercially relevant conditions.

Conventionally, these requirements are addressed through an approach that can generally be described as follows:
“For a given molecule and associated model data, calculate the desired properties.”
This is a forward problem formulation which gives rise to significant shortcomings. The exhaustive evaluation of all potentially

known molecular structures is computationally very expensive, especially when it is combined with molecular models of high
fidelity. Chemicals are selected from an arbitrarily compiled database which contains few options. This is extremely limiting in view
of the vast number of chemicals that can be considered as candidates for a specific application. The selected candidates are feasible,
but only offer incremental performance improvement over previously tested solutions. This limits the possibility of discovering
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These challenges may be addressed efficiently by an alternative approach which results from a reverse formulation of the
previous statement as follows:

“For given properties representing desired performance targets and associated model data, identify the molecular structure(s)
that best match these targets.”

This statement represents the main idea behind computer-aided molecular design (CAMD). Unlike the forward formulation,
CAMD does not require the a priori specification of a chemical as a candidate for a particular application. It is sufficient to specify the
desired property target, while the chemical that best matches this target will result as the solution of the molecular design problem.
For example, consider that a solvent must be identified for the separation of a mixture through liquid–liquid extraction. In the
CAMD formulation, this goal may be represented through a property such as solvent–solute solubility and the result will be a
solvent that will exhibit the maximum possible solubility toward the solute. In CAMD, it is not necessary to have a database of
chemicals. Instead, molecular fragments are used as building blocks for the synthesis of molecular structures, hence the term
“design.” This is possible due to the advent of group-contribution (GC) methods,1 where properties may be calculated through
models that account for the molecular structure as a combination of the groups comprising the molecule. These are the main
characteristics of a CAMD approach as defined originally by Gani and Brignole.2 Over the years, CAMD has evolved toward different
directions including the development of3, 4:

• Predictive models that can capture the nonideal behavior of molecules and mixtures, often provided in the form of various
different quantitative structure–property relations (QSPR) such as GC.

• Modeling approaches and simulation or optimization algorithms which can efficiently address numerical issues resulting from
nonidealities.

• Optimization approaches and algorithms which can handle nonlinear models of high fidelity and the combinatorial complexity
that results from the countless molecular and process option candidates for desired applications.

In this article, we provide an overview of the fundamental features of CAMD together with methods to address computational
complexity and applications in various sectors. See “Molecular Representation and Property Prediction” section presents QSPR and
predictive models, whereas see “Main Classes of CAMD Problems” section presents a classification of major CAMD problems. See
“General Solution Approaches” section presents algorithms used for the solution of CAMD problem classes, whereas see
“Methodologies for Solution of CAMPD Problems,” “Methodologies for Various Problem Classes,” and “Methodologies For
Reactive Systems Or QM-Based Approaches” sections discuss advanced methodologies which combine different solution algo-
rithms. See “Applications” section presents a review of CAMD applications in various domains, and see “Future Outlook and

Further Reading” section provides a future outlook of CAMD technology together with sources for further reading.
Molecular Representation and Property Prediction

GC Approach

For the prediction of molecular properties, all models require data which are generally available and easy to find when it comes to
the evaluation of few or conventional molecules. However, data are very difficult to obtain for the evaluation of wide molecular sets,
while the problem is amplified in cases where it is desired to assess novel molecular structures and to use high fidelity property
prediction models. Conventional property modeling approaches are unable to address these challenges. For every chemical that
needs to be simulated, experimental data must be fitted in a model which is then used to predict its properties at different
conditions. This is clearly inefficient because large experimental effort is required for every chemical.

Instead of fitting models for entire molecules, it is more efficient to develop models for the molecular fragments (atoms, bonds,
or groups) that comprise molecules. This is because the properties of a molecule are usually established based on contributions
from its fragments.5 The intermolecular forces that determine the properties of interest depend mostly on the bonds between the
atoms of the molecules. Such contributions are largely determined by the nature of the atoms involved (atom contributions), the
bonds between pairs of atoms (bond contributions or equivalently group interaction contributions), or the bonds within and
among small groups of atoms (GCs).5 It is therefore possible to use experimental data for entire molecules and fit models which are
based on the effects of their fragments in the corresponding properties. It is generally assumed that fragments can be treated
independently of their arrangements or their neighbors. In case of insufficient accuracy, corrections may be incorporated for specific
(higher-order) multigroup, conformational or resonance effects. This is the underlying concept of the GC methods. For example,
instead of fitting data into a model that directly predicts the critical temperature of ethanol, it is possible to develop a model which
exploits the functional groups comprising ethanol, namely –CH3, >CH2, and –OH, to predict this property. Fig. 1 shows how a
property X may be predicted using a GC approach. It is worth noting that GC models employing functional groups have prevailed
over atom and bond contributions in CAMD implementations.

The idea is very convenient because the contributions of functional groups may be derived by considering experimental group
interactions for a very wide set of molecular structures. As a result, the contributions of groups to the calculation of the desired
property remain the same regardless of the structure in which they are utilized. For example, the calculation of the critical
temperature for a completely different structure than ethanol, such as an alkyl-ester or an alkyl-amine, can be based on the same
contributions used for ethanol, supplemented by contributions for ester and amine groups. This makes it possible to predict the
properties for a vast number of chemicals, even of ones which were not in the set initially used to derive the models. Historically, the
idea of GC first appeared in Langmuir,7 according to Redlich et al.8 The latter was a main precursor for the work of Fredenslund
et al.1 which addressed the GC-based calculation of mixture properties using Universal Quasi-Chemical Functional-group Activity
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Fig. 1f0010 The concept of GCs based on atomic fragments, bond fragments, first- and higher-order functional groups. Reproduced from Kolska, Z.; Zabransky, M.;
Randova, A., Group Contribution Methods for Estimation of Selected Physico-Chemical Properties of Organic Compounds. In Thermodynamics-Fundamentals and Its
Application in Science. Morales-Rodriguez, R. Ed.; InTech: London, 2012, Chapter 6, pp. 135–162. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
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Formally, the addition of functional groups for the prediction of a property is shown in Eq. (1)9:

f xð Þ ¼
X
i

NiXi þ w
X
j

MjDj þ z
X
l

OlEl (1)

where Ni, Mj, and Ol represent the number of occurrences of first-, second-, and third-order groups of types i, j, l in a molecule,
respectively, and Xi, Dj, El are the contributions of the corresponding groups. Constants w and z are assigned zero and unity values
depending on the use of second- or third-order groups, in addition to first-order ones. First-order groups are basic molecular
fragments which support the representation of a very ample variety of organic compounds. Second- and third-order groups
introduce additional structural information about more extensive molecular fragments in order to improve the description
provided by first-order groups. Second- and third-order groups further enable a better description of multifunctional or multicyclic
compounds and support differentiation between isomers. It is also worth noting that function f(x) may either be a linear model or a
nonlinear model of the corresponding property. For example, in normal boiling point f(x) is a logarithmic model of the right-hand

side of Eq. (1), whereas the critical volume is a linear model.9
Other Molecular Representations

GCmolecular representations through functional groups do not account for the internal molecular architecture, hence the molecule
is represented as a loose composition of groups which includes the type of groups that comprise it and the number of occurrences of
each group. Other QSPR have been developed which offer a more rigorous representation of the molecular structure (e.-
g., considering atoms or bonds). Main types of such QSPR include the topological indices and the signature molecular descriptors.

Topological indices characterize a compound with a single number, based on the interconnectivity and the types of atoms in the
molecule.10 They are based on the concept of the molecular graph, that is, the graph representation of a molecule where atoms and
bonds correspond to vertices and edges, respectively. Molecular graphs can be represented by different types of matrices such as the
vertex adjacency matrix, the edge adjacency matrix, and the incidence matrix, to name but a few. Topological indices which are
based on molecular connectivity are also called connectivity indices. The first connectivity indices were proposed by Randic,11 who
used them to describe the degree of branching in alkanes and to model enthalpy of fusion and vapor pressure. Austin et al.4 provide
an overview and an interesting discussion of topological and connectivity indices.

Signature descriptors are based on molecular graphs where vertices denote atoms and edges denote bonds. A molecule is
therefore represented by a set of canonical subgraphs, each rooted on a different vertex with a predefined level of branching, which is
called height. Atomic signatures are defined as canonical subgraphs consisting of all atoms at a distance from the root which is equal
to the height. The set of all unique atomic signatures and the occurrence with which they appear in the molecular graph are then
defined as the molecular signature.12 Austin et al.4 provide a detailed overview of signature descriptors together with GC

implementations.
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Property Prediction Models

Pure component properties
The original, UNIFAC-based GC concept of Fredenslund et al.1 has been extended by Constantinou and Gani,13 who proposed the
use of UNIFAC groups for the prediction of several pure component properties, with revisions and significant extensions to other
properties presented by Marrero and Gani9 and Hukkerikar et al.14. The GC method of Joback and Reid15 is also used frequently in
CAMD. A wide collection of GC models for pure component properties or activity coefficient models can be found in Poling et al.5

and Kolska et al.6 Hukkerikar et al.16 present a collection of GC models for the prediction of environmental and health properties.
Van Krevelen and Te Nijenhuis17 provide a wide collection of GC models for the prediction of polymer properties, while Coutinho
et al.18 provide a collection of GC models for ionic liquid properties. Austin et al.4 provide a review of GC-based models using
connectivity indices and signature descriptors.

Activity coefficient models
Activity coefficient models have been used widely in the context of GC formulations for the prediction of phase equilibria. The idea
is to use existing equilibrium data for predicting phase equilibria of systems for which no experimental data are available.5 The
activity coefficient generally consists of two main parts, namely the one that accounts for differences in molecular size and shape
and the other one that considers molecular interactions. According to Gmehling et al.,19 the first GC method for the prediction of
vapor–liquid equilibria through an activity coefficient model was the ASOG (Analytical Solution of Groups) method.20, 21 ASOG
contained some arbitrary assumptions in the activity coefficient estimation,5 which were efficiently addressed through UNIFAC
proposed by Fredenslund et al.1 In UNIFAC, the activity coefficients g consist of a combinatorial part c which accounts for
differences in molecular size and shape in a mixture, and a residual part r which accounts for energy interactions and functional
group sizes and interaction surface areas.

lngi ¼ lngci þ lngri (2)

The calculation of the activity coefficient requires only three parameters, namely the van der Waals (vdW) group volume Rv, vdW
group surface area Q, and the group–group interaction parameter amn. The first two parameters participate in the calculation of the
combinatorial part which requires only pure component information. The group–group interaction parameter participates in the
residual part and needs to be evaluated from experimental phase-equilibrium data.5

The original UNIFAC1 has been very successful, because it can predict reliably mixture properties over wide temperature and
concentration ranges, even azeotropic points. However, the predictions of activity coefficients at infinite dilution and of excess
enthalpies lack reliability, while results for asymmetric systems also require improvement.19 Such shortcomings have been
addressed through the modified UNIFAC (Do)22, 23 and the modified UNIFAC (Ly).24, 25 The introduced modifications focus on
a better representation of gi

c. The latter is updated with a volume term which is a nonlinear function of the vdW volume r (calculated
through Rv) and a group–group interaction parameter with a second-order polynomial temperature dependence which requires
data in UNIFAC (Do) for parameters bmn and cmn, in addition to amn.

19 Further to addressing previous shortcomings, these
modifications also allow UNIFAC (Do) to provide reliable predictions even for materials exhibiting very nonideal phase equilib-
rium behavior, such as polymers and ionic liquids.26, 27

Cubic equations of state
Equations of state (EoS) are used for calculations of thermodynamic properties of mixtures in industry and in academia, especially
for systems at high pressures. The term “high pressure” refers to pressures high enough to significantly alter the thermodynamic
properties of both liquid and vapor phases, typically over 10 bar. In most cases, such high-pressure mixtures contain at least one
component at supercritical conditions.

The most popular class of EoS is the so-called cubic. Such models originate from the vdW equation of state (EoS), which was
suggested in 1873 as the first model that could describe properties of both liquid and vapor phases.28 The vdW EoS has been the
base for hundreds of EoS in the past years.29, 30 For example, considering the very popular Peng–Robinson EoS there are more than
220 modifications and uncountable studies related with parameter estimation and extension to mixtures.30

Cubic EoS became very popular in oil and gas industry, since they are simple in terms of mathematical formulation and present
satisfactory correlations and predictions of thermodynamic properties for mixtures of nonpolar and nonhydrogen bonding
fluids.31, 32 Cubic EoS are reviewed in some excellent research papers and books chapters.29–36 In this section, the essentials of
such models are presented to emphasize in routes that render those models predictive.

Besides the vdW EoS,28 which now presents mostly historical value, the most well-known cubic EoS are the Redlich–Kwong37

(RK), the Soave–Redlich–Kwong38 (SRK), and the Peng–Robinson39 (PR) EoS.31, 32 Such EoS, along with typical expressions often
used for estimating their parameters, are presented in Table 1.

The vdW EoS can be considered as a modification of the ideal gas EoS by introducing two significant improvements, that is, the
hard-core volume of molecules, which is related to the parameter b and the attractive intermolecular interactions related to the
parameter a. Thus, the first term of the right-hand side of the corresponding equation of Table 1 refers to the repulsive, while the
second term to the attractive intermolecular interactions.32 Parameters a and b are fluid-specific parameters and can be estimated if
the critical temperature, Tc, and critical pressure, Pc, are known. However, the vdW equation provides only a quantitative description
of vapor–liquid equilibrium and volumetric properties of real fluids and mixtures, even for simple ones, such as light hydrocar-
bons.31, 32 Such inefficiency of the model resulted in the development of many improved versions of cubic EoS during the last
Revises2 Chapter No.: 14342 Title Name: CMSE
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Table 1t0010 The most well-known cubic equations of state

EoS Equation Energy and covolume parameters

Van der Waals28 (vdW) P ¼ RT
V�b � a

V2 a ¼ 27
64

RTcð Þ2
Pc

b ¼ 1
8
RTc
Pc

Redlich–Kwong37 (RK) P ¼ RT
V�b � a

V Vþbð Þ
ffiffi
T

p
a ¼ 0:42748

R2T2:5
cð Þ

Pc

b ¼ 0:08664 RTc
Pc

Soave–Redlich–Kwong38 (SRK) P ¼ RT
V�b � a Tð Þ

V Vþbð Þ
ac ¼ 0:42748 RTcð Þ2

Pc

b ¼ 0:08664 RTc
Pc

a Tð Þ ¼ ac 1þm 1� ffiffiffiffiffi
Tr

p� �� �2
m ¼ 0.48 þ 1.57o � 0.176o2

Peng–Robinson39 (PR) P ¼ RT
V�b � a

V Vþbð Þþb V�bð Þ
ac ¼ 0:45724 RTcð Þ2

Pc

b ¼ 0:07780 RTc
Pc

a Tð Þ ¼ ac 1þm 1� ffiffiffiffiffi
Tr

p� �� �2
m ¼ 0.37464 þ 1.54226o � 0.269926o2
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In this direction, Redlich and Kwong37 added a temperature dependence in the parameter a, which was revised as a/T0.5, and
developed the well-known RK EoS. Later, in 1949, Soave38 suggested a significant improvement to the RK EoS by introducing a new
temperature dependence to the attraction parameter, which now is a function of the acentric factor o, that resulted in the so-called
SRK EoS. The acentric factor represents a measure of the nonsphericity of the molecule and can be estimated through the following
relation, if data for vapor pressures are available31:

o ¼ � log Psat
r jTr¼0:7 � 1:00 (3)

In the latter equation, Pr
sat and Tr are the reduced vapor pressure and temperature, respectively.

As shown in Table 1 for the most well-known cubic EoS, such models usually require the knowledge of two fluid-specific
parameters (a and b) or three fluid-specific parameters (a, b, ando). Having such pure fluid parameters, calculations for mixtures are
feasible, since the relative mixture parameters can be calculated through appropriate mixing and combining rules. The most
common mixing rules are the so-called van der Waals one fluid (vdW1f ) mixing rules combined with classical combining rules,
that is, the geometric mean rule for the cross-energy and the arithmetic mean rule for the cross covolume parameter:

a ¼
Xn
i

Xn
j

xixjaij (4)

b ¼
Xn
i

Xn
j

xixjbij (5)

aij ¼ ffiffiffiffiffiffiffi
aiaj

p
1� kij
� �

(6)

bij ¼ bi þ bj
2

1� lij
� �

(7)

where kij and lij are binary parameters. However, the binary interaction parameter, kij, is by far the most important one in the
majority of applications.31

Consequently, it is clear that there is a need of fluid-specific parameters in order to apply such models. Parameters a and b are
usually calculated from the experimental values of critical pressure and critical temperature, as shown in Table 1, while the acentric
factor can be calculated from experimental vapor pressure data. In this way, the critical point is accurately described; however, rather
unsatisfactory vapor pressures are predicted away from the critical point, while significant deviations are also observed in pressure-
volume-temperature (PVT) predictions.31 In order to obtain a more accurate description of vapor pressure and density data, such
pure fluid parameters are adjusted to experimental vapor pressures and liquid densities. In this way, a satisfactory description is
obtained; however, the critical point is overpredicted.31 Having the pure fluid parameters, mixture properties are calculated using
appropriate mixing and combining rules, such as the vdW1f rules. The binary parameters kij and lij are usually adjusted to
vises2 Chapter No.: 14342 Title Name: CMSE
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In cases of lack of any experimental data, in order to apply such models in a purely predictive way, the values of pure fluid
parameters should be predicted through an appropriate method. However, as shown in Table 1, the estimation of pure fluid
parameters for the common cubic EoS reduces to the estimation of the critical pressure and temperature as well as of the acentric
factor. For this purpose, appropriate GC methods that are described in “Property Prediction Models” section could be applied, with
the most popular being the GC methods of Amprose,41, 42 Joback,15 and Constantinou and Gani13, 43 (for an extensive review of
such methods the reader is referred to the collection of Poling et al.5 and critical review of Kontogeorgis and Tassios44).

Another, rather not popular, approach is the calculation of parameters a and b from first principles.31 For example, the vdW
equation can be derived from statistical thermodynamics, by assuming a hard-core potential for repulsive interactions and a
Lennard-Jones potential for attractions beyond the hard-core potential.32 In this way, the parameter a is associated with the
Lennard-Jones attractive interaction parameter e and parameter b with the hard-core volume of molecules.32 However, such
approach is rarely used. In contrast, the connection of the covolume parameter b with the hard-core volume of molecules allows
the development of empirical correlations with the vdW volume, which makes feasible the prediction of such molecular param-
eter.31, 45, 46 However, since the covolume parameter b is a measure of the volume of a molecule that other molecules cannot
penetrate, it is expected to be higher than the molecular (or the vdW) volume.31 Furthermore, trends of the attraction parameters
with the vdW volume can be estimated. However, such correlations are different for different homologous series, in contrast with
the covolume parameter b for which universal correlations with the vdW volume can be obtained.46

Predictions for mixture properties are obtained in two ways, that is, using a zero value for the binary parameters kij and lij and
using appropriate methods for estimating them (especially the binary interaction parameter kij, which is by far the most important
in most applications31).

In this direction, it was suggested that the binary interaction parameters could be estimated if intermolecular forces are properly
accounted for. Consequently, since the parameter kij reflects a correction of the geometric mean rule for the cross-energy parameter,
it can be calculated through a Hudson and McCoubrey type equation, which provides the cross-interaction energy as a function of
the ionization potentials of both compounds.47 Using this approach, Coutinho et al.48 suggested relevant equations for both the
binary parameters kij and lij. Later, Coutinho et al.49 suggested the following relation for the binary interaction parameter:

kij ¼ 1� 2
ffiffiffiffiffiffiffi
bibj

p
bi þ bj

 ! n=3ð Þ�2

(8)

The parameter n in this equation depends on the symmetry of the mixture. The authors suggest using n ¼ 6 for very asymmetric
mixtures.

Furthermore, many correlations to estimate the kij for specific mixtures can be found in the literature (e.g., mixtures containing
light hydrocarbons,50 as well as mixtures containing hydrocarbons and methane,51 nitrogen,52 and carbon dioxide53, 54). Such
correlations are based mostly on phase equilibrium experimental data, purely empirical and often unsuitable for extrapolation.

Finally, the binary interaction parameter can be calculated through a GC approach. In this direction, Jaubert and coworkers55–57

following an approach of Peneloux and coworkers58, 59 developed a GC method for estimating temperature-dependent binary
interaction parameters (kij(T )) for the PR EoS. According to their approach, the kij of a (sub)binary system is a function of
temperature and of the critical temperature, critical pressure, and acentric factor of each compound. The resulting model/approach
was called PPR78 (predictive 1978, PR EoS).55 Later, the same approach was used to develop a GC method that allows the
estimation of temperature-dependent binary interaction parameters for the SRK EoS, while the resulting model/approach was called
PR2SRK.60

EoS/GE models
Cubic EoS coupled with the vdW1f mixing rules result in successful description of mixtures that contain nonpolar fluids. However,
the vdW1f mixing rules are not capable of representing highly nonideal mixtures, such as systems with polar or hydrogen bonding
fluids. The inaccuracy of cubic EoS in describing properties of polar and associating fluids, which are better correlated using an
activity coefficient model, as well as the inability of the latter models for high pressure calculations, resulted in an elegant approach
to combine advantages of both types of models, that is, to match the excess Gibbs energy function of the mixture, as predicted by the
EoS, with the one predicted by an activity coefficient model at a reference pressure. Such approach yielded a new class of models, the
so-called EoS/GE models, which are mainly mixing rules for the energy (and covolume) parameters of cubic EoS. The EoS/GE

models have been reviewed in many interesting research articles and books.31, 34, 61, 62 Consequently, here only the basic
information will be provided, focusing on purely predictive models.

The idea of GE mixing rules was firstly introduced by Huron and Vidal,63 who calculated the mixture parameter a of a cubic EoS
by equating the excess Gibbs energy of the cubic EoS with the relative term of the nonrandom two-liquid (NRTL) activity coefficient
model at the limit of infinite pressure. Since then, several approaches have been suggested on this idea, depending on the pressure
chosen for solving the EoS.31, 61, 62 However, using the infinite pressure approach, the existing parameter tables from activity
coefficient models, which are obtained from low pressure data, cannot be used. Furthermore, Mollerup64 questioned the validity of
using infinite pressure and instead proposed the low pressure limit to equate the GE expressions from the two models. Such
approach was also used by Michelsen and coworkers, who developed the so-called modified Huron–Vidal first-order and second-
order mixing rules (MHV1 and MHV2, respectively).65–67 Later, Wong and Sandler68 matched the Helmholtz function from a cubic
Revises2 Chapter No.: 14342 Title Name: CMSE
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In order to perform calculations for mixtures using such mixing rules, one has to know the parameters of the used activity
coefficient model (with NRTL, UNIQUAC, or Wilson models being the most popular). Thus, such approach cannot be used in cases
of lack of any experimental data for adjusting activity coefficient model parameters. However, such difficulty can be overcome using
a GC activity coefficient model (with UNIFAC being the most popular of this kind of models). Consequently, assuming that all
group–group interaction parameters are known, a fully predictive model (no further parameters need to be adjusted) is obtained.

Among the first attempts to develop a predictive model was the work of Vidal and coworkers,69 who used the Huron–Vidal
mixing rule in SRK and PR using the residual term of UNIFAC. However, using the infinite pressure approach, the existing parameter
tables from activity coefficient models, which are obtained from low pressure data, cannot be used and new interaction parameters
should be adjusted based on experimental data. The Huron–Vidal mixing rule coupled with the SRK EoS was also used in a GC
approach by Soave and coworkers.70–72

Many researchers used the zero pressure approach for combining a cubic EoS with UNIFAC. Two methods attracted particular
interest, that is, the MHV2 method by Michelsen and coworkers66, 67, 73 and the PSRK method by Gmehling and coworkers,19, 74–77

who extended the original UNIFAC table to groups representing light gases. The latter group also developed a volume-translated
Peng–Robinson EoS.19, 78, 79

Furthermore, Orbey et al.80 developed an EoS approach based on theWong–Sandler mixing rule68 and the UNIFAC GCmethod.
Without needing to redefine the UNIFAC parameters, satisfactory predictions were obtained for systems for which UNIFAC provides
an accurate low pressure description.

In order to address the limitation of EoS/GE models to size asymmetric systems, Tassios and coworkers81 suggested a new mixing
rule based on the linear combination of Vidal’s and of Michelsen’s mixing rules (LCVM). Such mixing rule was coupled with a
modified volume-translated PR EoS and the UNIFAC activity coefficient GC model. It was proved that the model provides successful
predictions of the vapor–liquid equilibrium of polar and nonpolar fluid mixtures at low and high pressures, as well as of systems with
dissimilar component size, such as those containing light gases and high molecular weight alkanes.81 According to Kontogeorgis and
Goutsikos,62 LCVM is the last one of the models offering a significant advance in the topic of EoS/GE mixing rules.

However, recently, Voutsas et al.82 suggested the so-called Universal Mixing Rule, combined with a modified volume-translated
PR EoS with UNIFAC GC model. Such approach yields satisfactory phase equilibrium predictions for both symmetric and
asymmetric systems, including systems containing polymers and systems with highly nonideal behavior, such as mixtures with
organic acids.83, 84

According to de Hemptinne et al.,33 the availability of EoS/GE models considerably widens the applications range of EoS, since if
models are well parameterized, virtually all complex systems can be accurately described. Nevertheless, EoS/GE models carry also
limitations of the constituent models, which are, in many cases, important. A thorough review of the capabilities and limitations of
EoS/GE models is provided in the excellent review article of Kontogeorgis and Goutsikos.62

Advanced statistical thermodynamic models—The statistical associating fluid theory approach
Over the last years, advanced thermodynamic EoS models were developed based on statistical thermodynamics.31 These models are
more complex than traditional approaches (e.g., cubic EoS and activity coefficient models), but result in significantly more accurate
predictions for systems that exhibit nonideal behavior, such as polymer solutions and hydrogen bonding fluid mixtures. One
successful family of such models is based on Wertheim’s first-order thermodynamic perturbation theory85–88 and includes all SAFT
(Statistical Associating Fluid Theory) type models that are very often used in molecular design applications.

The first SAFT approaches appeared in the literature in the end of 1980s. Based on the work of Wertheim,85–88 Gubbins and
coworkers developed the SAFT EoS for spherical and chain molecules with one or more hydrogen bonding sites.89, 90 At the same
time, a similar model was also developed by Huang and Radosz.91, 92 Both models are usually referred to as “SAFT”; however, in
many cases, the acronym SAFT-HS is attributed to the former one, while the acronym SAFT-HR is attributed to the latter model.93

In SAFT, the Helmholtz free energy is written as the sum of contributions due to hard-sphere repulsive interactions (Ahs), due to
chain formation through bonding of a number of hard-spheres (Achain) and due to association (Aassoc), while a dispersion term
(Adisp) is added as a perturbation to the reference fluid94:

A

RT
¼ Aideal

RT
þ Ares

RT
(9)

Ares

RT
¼ Aref

RT
þ Adisp

RT
¼ Ahs

RT
þ Achain

RT
þ Aassoc

RT
þ Adisp

RT
(10)

However, additional terms can be added in Eqs. (9) and (10) to account for polar and ionic interactions. Based on Wertheim’s
work, contributions for the chain and the association term are obtained, which are essentially unchanged in the various versions of
SAFT.31

Numerous EoS models that are based on the SAFT approach appeared in literature, since the development of the original SAFT
EoS. Such SAFT-type models are reviewed in some review articles and book chapters.31, 93–97 Some of the popular SAFT-type models
are presented in Table 2.

Parameter estimation
SAFT-type models present a more realistic, but still approximate picture, of molecules and molecular interactions, compared to
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Table 2t0015 Equation of state models that are based on SAFT

Acronym References

SAFT-HS Chapman et al.,90 Jackson et al.89

SAFT-HR Huang and Radosz91, 92

Simplified SAFT Fu and Sandler98

LJ-SAFT Kraska and Gubbins99, 100

Soft-SAFT Blas and Vega101

SAFT-VR Gil-Vilegas et al.102 and Galindo et al.103

SAFT-VR Mie Lafitte et al.104

PC-SAFT Gross and Sadowski105, 106

Simplified PC-SAFT von Solms et al.107

tPC-SAFT Karakatsani et al.108

SAFTþcubic Polishuk109
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interactions is the need for a larger number of fluid parameters. Most SAFT-type models use three pure fluid parameters to
characterize nonhydrogen bonding fluids, while they need two additional parameters for every hydrogen bonding interaction
that occurs in the system. For example, in SAFT-HR,91, 92 each fluid is characterized by three parameters for nonassociating and five
parameters for associating components. These parameters are the number of segments per molecule, m, the segment volume, v00,
and the dispersion energy parameter, u0/k, for segment–segment interactions. Additional parameters for association are the energy
of association, ehb/k, and the volume of association, k. Such pure fluid parameters are usually estimated by adjusting model
predictions to experimental data for vapor pressures and liquid densities. However, such approach may result in more than one
parameter sets that accurately describe the aforementioned pure fluid properties, but not all of them are able to describe other
properties, such as derivative properties and the phase behavior of mixtures. For this reason, besides the use of vapor pressures and
liquid densities, the use of other experimental data such as derivative properties,104, 110 heats of vaporization111 and spectroscopic
or calorimetric data (for estimating the hydrogen bonding parameters)112 has been suggested.

Having the pure fluid parameters, calculations for mixtures are feasible. Mixture parameters are obtained using appropriate
mixing rules that are needed in the dispersion term of SAFT variants. Typically, the vdW1f mixing rules are used. Moreover, the
Lorentz–Berthelot combining rules are typically used for the segment energy and diameter (or volume) parameters.

eij ¼ ffiffiffiffiffiffiffi
eiej

p
1� kij
� �

(11)

sij ¼ si þ sj
2

(12)

Similarly to the cubic EoS, a binary interaction parameter, kij, is often used in the combining rule as a correction for the cross-
energy parameter.

In mixtures of hydrogen bonding fluids, in which cross-association occurs, additional parameters for the two association
parameters are needed. Many researchers tried to adopt such parameters from spectroscopic or calorimetric data,112 which, however,
are rare. In most cases, combining rules, often with limited physical base, are used.

In cases of lack of any experimental data, in order to apply such models in a purely predictive way, the values of pure fluid and
mixture parameters should be predicted through an appropriate method. For pure fluid parameters, such problem can be, at least
partially overcome, in three possible ways, that is, using correlations of the pure fluid parameters with the molecular weight or the
vdW volume, adopting some of the parameters from quantum mechanics and using GC methods.

Correlations of pure fluid parameters
The development of correlations of pure fluid parameters with molar mass was shown early from the first studies that appeared in
the literature. For example Huang and Radosz91, 92 mention (for SAFT-HR) that for chain molecules, the segment volume and
segment energy are nearly constant upon increasing the molar mass, while the segment number is a linear function of molar mass.
According to the authors, such observation facilitates the prediction of molecular parameters for many compounds, such as
polymers, where experimental data are rare and parameters have to be estimated based on molar mass and chemical structure
only. Later, many researchers developed such correlations in order to enhance the predictive ability of the model.113 However, there
are significant disadvantages of this approach. Such correlations are not universal, but have to be developed for every family of
compounds, for example, such correlations are different for linear and branched hydrocarbons,91 even though that such com-
pounds present very similar chemical structure. Moreover, such correlations are not easily obtained for the hydrogen bonding
parameters, because the adjustment of five pure fluid parameters is not an easy task, since the dispersion and hydrogen bonding
energy parameters are intercorrelated, without all mathematical solutions to have a physical base. However, in some cases, the three
nonhydrogen bonding parameters are obtained by keeping constant the hydrogen bonding energy and volume for all compounds

of the same family (e.g., alcohols and primary amines).
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Adopting parameters from quantum mechanics
The successful estimation of EoS pure fluid parameters through quantum mechanical calculations is a very interesting, but rather
demanding, suggestion. Such approach could result in purely predictive models; however, despite the effort, this goal has not yet
been accomplished. Nevertheless, interesting approaches were suggested in literature to estimate some, but usually not all, of the
needed parameters. In this direction, Wolbach and Sandler114 used the Hartree–Fock theory and the density functional theory (DFT)
to calculate the enthalpy and entropy of dimerization for water, methanol, and carboxylic acids. Furthermore, molar volumes from
molecular orbital calculations were related to the segment size and chain length parameters of SAFT. The results were used in the
SAFT EoS to model the phase behavior of the aforementioned pure compounds114 and their mixtures with nonassociating
components.115 In a subsequent publication, Wolbach and Sandler,116 using molecular orbital calculations, estimated the cross-
association parameters in mixtures of associating compounds. They also developed a mixing rule, which allows the estimation of
the cross-association SAFT parameters from the values of the self-association parameters of the species in the mixture. Using such
mixing rule, they were able to satisfactorily correlate vapor–liquid equilibrium data for mixtures of associating compounds.

Singh et al.117 performed quantum chemical calculations to determine molecular parameters, such as the dipole moment, the
quadrupole moment, the dipole polarizability, and the dipole–dipole dispersion coefficient. Such molecular parameters were used
in the polar PC-SAFT framework to calculate properties of pure fluids and mixtures.118 Pure compound parameters, which were not
adopted from quantum mechanical calculations, were adjusted to experimental data according to the usual procedure, that is, by
adjusting model predictions to experimental data. Such quantum chemical calculations were also used in order to evaluate and
improve the treatment of multipolar interactions in a PC-SAFT-based EoS.119 In another publication of the same group, molecular
descriptors for sizes, shapes, charge distributions, and dispersion interactions were computed for several compounds using
quantum chemical ab initio and DFT calculations and were correlated with the remaining three parameters of a polar PC-SAFT
EoS.120 The three pure compound parameters, which were not determined directly by quantum chemistry, were adjusted to
experimental vapor pressure, saturated liquid density, and critical property data. Finally, such EoS parameters, obtained from
quantum mechanics, were used to estimate the surface tensions of pure fluid vapor–liquid systems.121

Finally, Lucia et al.122 presented a new algorithm for estimating association parameters within molecular-based EoS (and using
the simplified SAFT-based equation as an example) that allows the incorporation of quantum chemical calculations.

GC methods
The GC approach is by far the most popular approach in predicting EoS parameters. In this way, EoS models become fully predictive
and their application range is expanded to systems with little or none of experimental data. Within the SAFT framework, two
categories of group-contribution methods were mainly developed, that is, those that refer to homonuclear and those that refer to
heteronuclear models. The first category includes most SAFT-type models, in which all of the segments making up the molecular
chain are identical, while in the second category the segments in a given molecule are arbitrary different.93 Heteronuclear molecular
models account for varying sizes and interactions of segments that constitute the molecules. Such segments can be assigned to
functional groups and, therefore, a GC method can be incorporated into the SAFT approach. Consequently, heteronuclear SAFT-
type models are the base for promising predictive approaches and, for this reason, attracted particular interest during the past
years.123 A review of the homonuclear and heteronuclear approach is presented elsewhere.93

Various GC approaches have been developed through the SAFT framework and were reviewed in recent journal articles and book
chapters.31, 93, 123–125 Some of the most popular approaches are presented in Table 3.

Computational chemistry models—The conductor-like screening model approach
All predictive models that were presented in the previous sections, such as activity coefficient approaches, group-contribution EoS,
and EoS/GE models, require the use of experimental data to obtain the needed molecular or group-specific parameters. Further-

more, as it was mentioned in the previous section, despite the effort to predict EoS parameters from quantum mechanics, such
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Table 3t0020 GC approaches developed for SAFT-type models

SAFT variant References

SAFT Lora et al.126

Tamouza et al.127

Tamouza et al.128

PC-SAFT NguyenHuynh129

Vijande et al.130

sPC-SAFT Tihic et al.131

Tihic et al.132

SAFT-VR Tamouza et al.127

Tamouza et al.128

GC-SAFT-VR Peng et al.133

SAFT-g Lymperiadis et al.134

Lymperiadis et al.135

SAFT-g Mie Papaioannou et al.125

hs-PC-SAFT Paduszy�nski and Domanska123
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approaches have not yet resulted in a purely predictive model, that is, they only reduce the number of adjustable parameters, but,
still, some of them are obtained using experimental data.

So far, the only models that allow the prediction of thermodynamic properties without needing any experimental data for the
description of real fluids andmixtures are those that are based on the COnductor-like ScreeningMOdel (COSMO) approach.136 The
most widely used advanced model of this family is the COSMO-RS (COSMO-RS stands for COnductor-like Screening MOdel—for
Real Solvents).137–139 The ultimate advantage of such model is that it allows predictions of thermodynamic properties using only
data from quantum chemical calculations.

The COSMO-RS model was developed by Klamt and coworkers,137–139 who transformed the COSMO solvation approach in a
thermodynamic model for real fluids through a novel thermodynamic treatment of the electrostatic interactions as intermolecular
interactions and by approximating the screening charges of a dielectric medium of permeability e with the scaled screening charges
of a conductor.136–139 After the pioneering work by Klamt, various modifications of the COSMO-RS model appeared in the
literature.140,141

The ultimate advantage of such models is that they allow prediction of thermodynamic properties using only data from
quantum chemical calculations. Thus, they do not require experimental data, but only use as an input the so-called sigma profiles
(s-profiles) of the interacting molecules. The s-profile is the probability distribution of a molecular surface segment having a
specific charge density. Knowing only the molecular structure, such data are generated through quantum mechanical calculations.
Such advantage rendered COSMO-RS into a powerful predictive tool for phase equilibria and other thermodynamic properties.
However, despite the aforementioned significant advantage of the model, COSMO-RS presents certain limitations, which are based
on the fact that it is an activity coefficient model of mixtures. Thus, it can describe the liquid phase, but cannot account for the
supercritical state, for high-pressure and high-temperature vapor–liquid equilibrium and for the volume changes in mixing. In order
to overcome such limitations, effort has been made in order to develop EoS models based on the COSMO approach.142,143

Generating the s-profiles by quantum mechanical calculations is the most time-consuming and computationally expensive
aspect of using COSMO-based methods. However, today, extensive s-profile databases are available, which include thousands of
known molecules.144,145 Nevertheless, in order to avoid the time-consuming step of performing quantum mechanical calculations
in particular computer-aided design problems, various GC approaches appeared in the literature. In this direction, Mu et al.146,147

developed a GC method for predicting the surface charge density distribution (s-profile) for the COSMO-RS(Ol)148 and the
COSMO-SAC140 models, which are modifications of the original COSMO-RS model developed by Klamt and coworkers.137–139

Furthermore, Austin et al.151 developed a GC method to estimate s-profiles, based on the Virginia Tech’s Sigma Profile Database.

Such s-profiles were obtained using the parameters of the COSMO-SAC model.145
Main Classes of CAMD Problems

Classification Overview

Molecular design requires a method to enumerate the combinations which can be generated from a given set of molecular fragments
(e.g., atoms or functional groups) and a GC model to predict their properties. In the most general case, molecular design is
approached through the combination of GC models with optimization algorithms, exploiting the reverse problem formulation
discussed in the introduction. The optimum molecular structure can be identified by formulating an optimization problem that
emulates an automated molecular synthesis process (i.e., the iterative transformation and evolution of an initial structure). An
optimization algorithm guides the synthesis toward optimum structures and employs performance indicators either as objective
functions or as constraints representing molecular or application-related performance features.150 The classification of molecular
design problems can be based on whether it is desired to:

- Consider single or multiple performance criteria.
- Determine only optimum molecular structures or integrate process structural and operating decisions.
- Design single or multiple components in the form of mixtures or blends.
- Account for uncertainty in the employed models or internal and external process or application conditions.
- Consider inert or reactive systems.
- Include models which directly account for matter behavior at the atomic or molecular level.

Considering the earlier points together with computer-aided molecular (and process) design approaches proposed in the scientific
literature to date, molecular design problems are classified as follows:

1. Single-objective optimization computer-aided molecular design, referred to as SOO CAMD
2. Computer-aided molecular and process design, referred to as CAMPD
3. Multiobjective optimization computer-aided molecular design, referred to as MOO CAM(P)D
4. Computer-aided mixture design, referred to as CAMb(P)D
5. Computer-aided molecular design under uncertainty, referred to as CAMu(P)D
6. Computer-aided molecular, process, and control design, referred to as CAMPCD
7. Computer-aided molecular design for reactive systems, referred to as CAMR(P)D
Revises2 Chapter No.: 14342 Title Name: CMSE
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8. Computer-aided molecular design using quantum mechanical models, referred to as QM-CAM(P)D
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The order of the proposed classes either considers the chronological order by which corresponding works appear in published
literature or facilitates the elaboration of reasons that lead to the adoption of the corresponding approaches. Note that the different
problem classes may be used in various combinations. For example, MOO, SOO, or mixture/blend design formulations may be
combined with any of the other classes. Furthermore, the brackets indicate that process design has also been considered in relevant
publications or could be considered in the proposed class. The terms CAMbD and CAMPD are adopted from Gani151 and Pereira
et al.,152 respectively. The CAMbD problem is also reported as product design153 as well as CAMxD.154 Blend design is defined as a
subclass of mixture design (see “Summary of Classes” section). CAMR(P)D refers to the use of CAMD for identification of molecules
which promote chemical reactions or for the identification of molecules produced through reactions which are also identified as
part of the design procedure. QM-CAM(P)D, adopted from Struebing et al.,155 refers to the incorporation of quantum mechanical
models in CAMD for the prediction of properties pertaining to both physical and chemical molecular characteristics. The following

sections elaborate on the earlier-mentioned classes.
Single-Objective Computer-Aided Molecular Design

The first step to the mathematical formulation of a CAMD problem is the definition of a molecular structure as follows: let a vector
of groupsm ¼ [gl]l¼1

Ng , withNg representing the total number of available groups and a composition matrix Ak ¼ diag (nl
k)l¼1
Ng , which

indicates the number of occurrences nl
k of each group l for a kth molecule.156 A molecular vector Mk representing a kth molecule is

defined as follows:

Mk ¼ Ak�m (13)

where the composition matrix Ak contains information on the number of occurrences of each group.
The optimization problem can now be formulated as follows: Let a vector of Nof objective functions F ¼ [Fj]j¼1

Nof 2 ℝNof. Also let a
vector ofNd design variablesD ¼ [di]i¼1

Nd 2 ℝNd withM 2 D and let h(X,D), q(X,D) be vectors of equality and inequality constraints,
with X being a vector of state variables. Further, let a total number of NM molecules with k 2 [1,NM] and a vector C ¼ [ck]k¼1

NM

representing the concentration of the components (as mass or mole fractions) in the general case of multiple components or of a
mixture. For the case of designing a single molecule with a single objective, it holds thatNM ¼ 1 andNof ¼ 1. The problem takes the
following form:

optimize
D

F1 X;Dð Þ (14)

Subject to

h X;Dð Þ ¼ 0 (15)

q X;Dð Þ � 0 (16)

XL � X � XU (17)

DL � D � DU (18)

As an example, assuming a set of five functional groups, that is, Ng ¼ 5, vector D would contain the following design variables:
d1 ¼ k ¼ 1, d2 ¼ c1 ¼ 1, d3 ¼ n1

1, d4 ¼ n2
1, d5 ¼ n3

1, d6 ¼ n4
1, d7 ¼ n5

1. In this case, ck is constant and equal to 1, because the equality
vector contains the constraint

PNC

k¼1ck � 1 ¼ 0. Apart from d1 and d2 which are constant, the general case entries in D for the
molecular structure are di ¼ nl

1 8 l 2 [1,Ng], i 2 [3,Ng þ 2]. The only decision pertains to the structure of each component, that is,
the total number of design variables is Ng. Vector X could represent molecular properties, while a desired molecular property could
also be part of vector F. The equality and inequality constraints may represent the employed molecular models that ensure
feasibility or complexity of the proposed structures, and design or performance constraints, to name but a few. The indices L and
U represent upper and lower bounds utilized for all the variables. Note that the earlier-mentioned formulation remains generic in
order to introduce the main concepts of CAMD. Depending on the optimization approach, additional design variables may be
needed, such as binary variables to model the presence or absence of groups or bonds etc.157,158

According to Siougkrou,159 constraints pertaining to molecular structures are based on two main classes:

- Molecular feasibility ensuring that two adjacent groups are linked by one bond and the resulting molecule has zero valency.
- Molecular complexity imposing upper and lower limits on the number of same type groups and on the total number of groups in
a molecule.

Molecular feasibility is based on the valence of groups vl
k, that is, the number of free bonds in each group. The most widely used

constraint is proposed by Odele and Macchietto160:

XNg

l¼1

vkl � 2
� �

nkl ¼ 2m (19)
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where m takes the values of �1 for acyclic, 0 for monocyclic, and 1 for bicyclic compounds. This constraint refers to GC-based
molecular representations employing functional groups. Different constraints are needed in the case of other descriptors, such as
topological indices and signature descriptors. A detailed discussion regarding various types of connectivity constraints is reported in

Austin et al.4
Computer-Aided Molecular and Process Design

Molecules are generally designed to serve a particular application and are often used as intermediate materials in processes. For
example, they are used as solvents to facilitate the separation of components in the chemical industry, or as heat exchange fluids in
refrigeration and other thermodynamic cycles, to name but a few. In this respect, they are inherent components of the processes
where they are utilized, in the same way that different types of equipment are part of such processes. The chemical and physical
characteristics of such materials affect directly the operating, economic, and sustainability properties of the corresponding processes,
due to their thermodynamic, kinetic, and other links. Changes in such characteristics due to the use of different materials also
necessitate appropriate modifications in the process equipment so that the overall process performance remains optimum. Since
multiple properties of the molecule(s) to be designed influence one or more process performance objectives such as cost or
environmental impact, it is difficult to develop adequate objectives for molecular design to identify those molecules that maximize
process performance. In order not to develop molecules that lead to suboptimal process performance, it is advisable to integrate
molecular with process design approaches.

Integrated molecular and process design can be approached in a CAMPD problem formulation, as follows:
“For given molecular and process properties representing desired performance targets, identify the molecular and process

structural and operating characteristics that best match these targets.”
The CAMPD problem formulation changes the nature of the constraints in Eqs. (14)–(18). The equality and inequality

constraints also include the process models, whereas the objective function may include economic-, operating-, and
sustainability-related terms. Assuming a vector of P ¼ [pq]q¼1

NP process-related design variables, a total number Np of additional

design variables will be added, hence the total number of design variables will be Ng þ Np.
MultiObjective Computer-Aided Molecular Design

The development of CAM(P)D approaches using the SOO formulation of (14)–(18) introduces important challenges and
assumptions. Whether in CAMD or CAMPD, there might be several different criteria that need to be considered simultaneously.
For example, in CAMPD, optimum sustainability targets may need to be achieved in addition to high economic performance.
Formulations (14)–(18) indicate that one of the desired criteria should assume the role of the objective function that is optimized.
The remaining criteria are restrained to the auxiliary role of constraints, providing performance limits that either are desired to be
achieved or must not be violated. Papadopoulos and Linke161 showed that the selection of different criteria as F1 in Eq. (14) (and
the solution of the corresponding CAMD problem) results in different optimum molecules. Furthermore, the use of the remaining
criteria as constraints requires the selection of upper and/or lower bounds representing performance limits. Such a selection is
unwarranted as there is often no prior knowledge of these limits. In this context, design drives are poorly represented or
misrepresented and the results may be biased toward presumably optimal options.

The earlier-mentioned challenges may be addressed through a multiobjective formulation of the CAM(P)D problem as follows:

optimize
D

F1 X;Dð Þ, . . . , FNof
X;Dð Þ (20)

Subject to

constraints 15� 18ð Þ (21)

In the case of a multiobjective problem, the term “optimize” implies the possibility of simultaneous minimization, maximiza-
tion, or both, of all objective functions. To identify a set of optimum solutions, formulations (20) and (21) need to account for an
additional condition. A feasible point Dopt is called a Pareto-optimum or nondominated solution iff there exists no other point D∗

satisfying the following condition162:

F D∗ð Þ � F Dð Þ ^ 9j 2 1; . . .Nof

� �
: Fj D

∗ð Þ < Fj Dð Þ (22)

In the context of Eq. (22), the generated designs are evaluated in terms of optimality based on comparison of the objective
function values representing one solution in the nondominated set with the objective function values of the other solutions
contained in the set. The resulting Pareto or nondominated front indicates trade-offs among the objective functions. It shows how
much performance needs to be sacrificed in one objective function in order to gain performance in another. Additional imple-
mentation details can be found in Papadopoulos and Linke161 and Papadopoulos et al.162 Multiobjective molecular design is a key
enabler to decompose integrated molecular and process design problems as it allows introduction of a reduced (Pareto-optimal) set

of molecules into computationally demanding optimal process synthesis and design efforts.163
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Computer-Aided Mixture Design

Mixtures are often preferred in industry when there is no single compound which can achieve the desired behavior in all the
necessary criteria. For example, in reactive separation systems used for CO2 capture, it is necessary to use a solvent which exhibits fast
kinetics while simultaneously dissolving as much CO2 as possible.

164 Most solvents considered to date either exhibit fast kinetics at
the expense of low solubility toward CO2 or vice versa. With the use of a mixture instead of a single solvent, this challenge may be
addressed efficiently by incorporating two or more solvents which exhibit desired behavior in both kinetics and CO2 solubility.

165

In the CAMb(P)D problem, it is necessary to determine the optimum:

(a) number of components k in the mixture,
(b) structure of all components represented by nl

k,
(c) concentration ck of each component in the mixture,
(d) characteristics pi of the process in which the mixture is utilized.

In MOO CAMb(P)D, formulations (20)–(21) remain the same. The total number of design variables equals to NM(Ng þ 1) þ
1 þ Np. ForNof ¼ 1 andNM ¼ 1, the problem formulation is reduced to a single-objective problem for the design of one component

(see “Single-Objective Computer-Aided Molecular Design” section).
Computer-Aided Molecular Design Under Uncertainty

In any type of CAM(P)D formulation, the proposed molecular and/or process structures may deviate from their actual performance,
when implemented in practice. This is because the employed models are approximations of the real molecular behavior which they
are expected to emulate. The design procedure is therefore subject to uncertainty introduced in predictions at:

• The molecular level, where GC or other models are used to emulate molecular behavior.

• The molecular-to-process level, where thermodynamic mixture, kinetic or other models are used to deliver molecular chemistry
predictions at various conditions, often relevant to process requirements.

• The process level, where unit operation models of different fidelity may be used to determine desired molecular and process
characteristics.

Uncertainty practically means that the use of two or more different models for the prediction of the same property may result in
different values. If CAM(P)D is implemented independently in two or more iterations, using a different model for the same property
in every iteration, then it will result in different selected molecules.164–166 This is clearly undesired and should be avoided. In
addition to model-related uncertainty, molecular design results will also be affected due to external or internal variability in the
process system or application where the molecule is used.

With the aim to address these challenges, CAMu(P)D involves a reformulation of (14)–(18) as follows167:

optimize
D

P1 F X;D;Uð Þ½ � (23)

Subject to

P2 h X;D;Uð Þ ¼ 0½ � (24)

P3 q X;D;Uð Þ � 0½ � (25)

XL � X � XU (26)

DL � D � DU (27)

UL � U � UU (28)

whereU is a vector of uncertain parameters. Vectors F, h, and q now depend on the values of the uncertain parameters which should
be different than the values predicted by the employed models, that is, the nominal values, in order to quantify the probability of
obtaining different predictions. The different potential realizations of uncertain parameters can be quantified mathematically using
probability density distributions.168 This probability is formally represented through functions P1, P2, and P3 which are cumulative

distribution functionals such as the expected value, variance, etc.
Computer-Aided Molecular, Process, and Control Design

Using a CAMuPD formulation to emulate variability in process operation would result in optimum molecular and process features
enabling flexible operation. This means that the selected molecule and associated process features would be able to handle alternate
operating conditions under steady-state operation (e.g., to avoid the need for different solvent or process equipment when it is
desired to operate at different temperatures and flowrates). However, they would not be able to support efficient controllability, that

is, tracking of system changes and recovery from upsets or disturbances that persistently influence its operation, under dynamic
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conditions. Papadopoulos and Seferlis169 and Papadopoulos et al.162 show that materials exhibiting optimum economic perfor-
mance under steady-state conditions are likely to underperform at the influence of disturbances. This is shown in Fig. 2.

Each point in Fig. 2 represents one solvent and process scheme specifically designed to enable optimum economic performance
under nominal conditions (i.e., steady-state). It is clear that solvents and processes represented by a point such as S2, which exhibits
optimum nominal economic performance (i.e., lowest cost), have very poor controllability (i.e., very high controllability index
value). This translates to a solvent and process scheme that:

(a) Operates very far from the economically optimum set-points at the presence of disturbances.
(b) Needs to consume a very large amount of resources (e.g., increase significantly the use of costly heating utilities) to bring the

system back to each set-point.

On the other hand, point S5 exhibits the best controllability, but it represents an expensive solvent–process system to use at
nominal conditions. Solvent-processes represented by S3 and S4 exhibit the best compromise. Without this analysis,
solvent–process S2 would have been chosen with detrimental effects on process operation at the presence of disturbances and
possibly requiring an expensive control system to reinstate the process back to its desired operation.

The identification of molecular and process characteristics of optimum performance in view of disturbances can be formulated
as a CAMPCD problem as follows:

“For given molecular and process properties representing desired performance targets, operating disturbance scenarios repre-
senting conditions other than the nominal settings and associated molecular and process model data, identify the molecular and
process structural and operating characteristics as well as the control structure(s) that best match these targets.”

In mathematical terms, the CAMPCD problem is formulated as follows:

optimize
D,W

F X;D;W; Y;Eð Þ (29)

Subject to

h X;D;W;Y;Eð Þ ¼ 0 (30)

q X;D;W;Y;Eð Þ � 0 (31)

XL � X � XU (32)

DL � D � DU (33)

YL � Y � YU (34)

WL � W � WU (35)

EL � E � EU (36)

where E ¼ [et1]t1¼1
Ne is a vector of disturbances, W ¼ [wt2]t2¼1

Nw is a vector of manipulated variables, and Y ¼ [yt3]t3¼1
Ny is a vector of

controlled variables. Notice that in Eq. (29), it is now required to determine optimum values for the manipulated variables too.
Furthermore, both the manipulated and controlled variables affect the objective function; the former may be used to show the
resources that need to be used in order to bring the system back to its set-point, while the latter shows the distance from the set-

point. Both have a direct impact on the process economics.
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Fig. 2 Pareto front of economic performance of different solvent–process schemes under steady-state conditions (horizontal axis) versus controllability
performance at the presence of disturbances.169 Reproduced from Papadopoulos, A.I.; Seferlis, P., Comput.-Aided Chem. Eng. 2009, 26, 177–181 by permission of
Elsevier.
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Computer-Aided Molecular Design for Reactive Systems

This class pertains to the use of CAMD for the design of molecules which either promote chemical reactions or participate in
chemical reactions as raw materials or products. With respect to reaction promoters, the kinetic characteristics of chemical reactions
can be affected by the presence of materials such as solvents or catalysts which may change the rate constant and other properties.
Adjiman et al.170 provide an example of how a solvent may affect a ring-closing metathesis reaction by changing the rate constant,
the solubility, and the deactivation of the catalyst. A solvent like acetone increases the rate of reaction but facilitates the catalyst
deactivation hence hindering complete conversion. Dichloromethane enables complete conversion as it avoids catalyst deactiva-
tion, but the reaction rate is low. Cyclohexane enables high reaction rate and complete conversion at the expense of low catalyst
solubility. In this context, CAMR(P)D includes approaches to identify molecular structures which aim to strike an optimum balance
among such requirements.

With respect to CAMD of products, it is possible to design reaction products which exhibit favorable properties for a potential
application (e.g., biofuels with better ignition properties) but also enable production from reaction pathways that exhibit favorable
characteristics compared to existing production routes (e.g., their technological implementation is more economic). CAMDmay be
used to design raw materials which facilitate the production of certain products through reaction synthesis pathways that are

favorable compared to existing ones.
Computer-Aided Molecular Design Using Quantum Mechanical Models

QMmodels are used before, during, or after CAMD for the prediction of desired properties in reactive or nonreactive systems. In the
case of reactive systems, QM models are used in order to predict properties related to promotion of reactions or to develop simpler
models for properties such as the reaction rate constant, as they are able to describe the formation and breaking of bonds as well as
the transfer of electrons,171 to name but a few. At the same time, properties related to phase transitions in nonreactive systems can
also be predicted. QM-CAMR(P)D and QM-CAM(P)D are therefore emerging as approaches which use atomic- or molecular-scale
models to predict properties, such as activation energies, electronic charge distributions, dipole and higher moments, vibrational
frequencies,172 etc., as well as free energy difference between two species in solution and reactive trajectories to determine reaction
rate constants.171 Such properties are generally beyond the reach of standard thermodynamic models and EoS.3 QM refers to the
model used to predict molecular properties, hence it can be adapted to all types of the CAMD problem classes described in the

previous sections.
Summary of Classes

This section summarizes the mainmolecular design problem classes in Table 4 and discusses few subclasses which result from them.
The latter include the following:

Optimum molecular selection: This class may result from formulations (20)–(21) when NM > 1 and k is allowed to vary during
optimization within [1,NM], but nl

k obtains constant, prespecified values for every molecule k. This is the case of optimum molecular
selection from a set of structurally prespecified candidates. In every optimization iteration one molecular structure is selected as a
discrete option and evaluated in terms of F. It should also hold that for every evaluated molecule, ck ¼ 1. This formulation could be
used to screen a large database of molecules using an optimization approach.

Feasibility problem: In the reported objective function formulations, it is assumed that Fwill vary as a function ofD. An additional
subclass reported in Austin et al.4 is based on the assumption of a constant F. This is called a feasibility problem, implying that a large
set comprising numerous different molecular structures can be generated by enumerating parameters in D, and it can then be
reduced to fewer options that satisfy the constraints.

Continuous molecular representation : Another subclass includes the case where the discrete nl
k is replaced by a continuous

representation of a molecule. This representation was proposed by Macchietto et al.173 and Naser and Fournier174 and originally
maintained the use of UNIFAC groups, in mathematical formulations that allowed their representation through continuous
variables. The representation was later approached through size- and attraction-related characteristics pertaining to the use of
SAFT-type EoS175 in the continuous molecular targeting (CoMT)-CAMPD formulation or through pure component properties used
in cubic EoS.176

Proximity-to-property-targets : This subclass uses as F the distance between the properties of the designed molecule and desired
property targets.4 A similar approach is used by Bardow et al.175 to match the identified set of continuous parameters with a feasible
or real molecular structure.

Blend design: In formulations (20)–(21), if ck is varied but nl
k remains constantly at prespecified values, the structure of the

mixture components is predetermined. This may be combined with a case where the number of components k is constant or
variable. In this case, the problem is called blend design and the aim is to find the optimum concentration and/or number of
components for a mixture containing candidates with prespecified structures. We therefore propose that the determination of the
structure of the components is the necessary condition to differentiate between this class and CAMb(P)D problems.

Partial mixture design : A different case may include variations of ck for prespecified values of nl
k for only one of the mixture

components. In this case, the structure of the other component will result from optimization together with the optimum mixture

concentration. This case qualifies as CAMb(P)D too.
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Table 4t0025 Problem classes and main characteristics for single-objective optimization (SOO) cases (when Nof ¼ 1) and multiobjective optimization (MOO) cases
(when Nof > 1)

k ck nl
k pq Problem class

1 1 Const. Const. Process simulation for prespecified single molecule
1 1 Const. Var. SOO or MOO process design for prespecified single molecule
1 1 Var. Const. SOO or MOO CAMD
1 1 Var. Var. SOO or MOO CAMPD
>1 Const. Const. Const. Process simulation for prespecified mixture
>1 Const. Const. Var. SOO or MOO process design for prespecified mixture
>1 Const. Var. Const. SOO or MOO CAMbD with fixed mixture concentration
>1 Const. Var. Var. SOO or MOO CAMbPD with fixed mixture concentration
>1 Var. Const. Const. SOO or MOO process simulation and blend design with prespecified mixture composition (structures)
>1 Var. Const. Var. SOO or MOO process and blend design with prespecified mixture composition (structures)
>1 Var. Var. Const. SOO or MOO CAMbD
>1 Var. Var. Var. SOO or MOO CAMbPD

Var. and Const. are abbreviations for “varied” and “constant.”
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The classes of Table 4 are based on the number of objective functions Nof, the number of components k, the concentration of
components ck, the composition (structure) of components determined by the occurrences of groups nl

k in the molecules, the state
of process-related design variables pq, and the resulting number of design variables. Note that considering the previous criteria, the

proposed classification may be repeated for CAMu(P)D, CAMPCD, CAMR(P)D, QM-CAM(P)D, and QM-CAMR(P)D.
General Solution Approaches

Challenges in the Solution of Molecular Design Problems

In any class of molecular design problems, the need to obtain optimum solutions that are also sufficiently reliable to ideally enable
direct practical implementation imposes two requirements: (a) the consideration of numerous design decision options and (b) the
incorporation of high fidelity models during optimization. These requirements are illustrated conceptually in Fig. 3 in terms of
general model types and corresponding decision ranges.

Requirement (a) implies large combinatorial complexity which increases as more options are considered in different problem
classes. Requirement (b) pertains to the ability to solve nonconvex and large-scale systems of equations, which is challenged as more
detail is added in the models in order to obtain more realistic and accurate results. With respect to requirement (b), there are three
general types of models for both the molecular and process levels as shown in Fig. 3. High fidelity models provide a very detailed
representation of phenomena. However, it becomes less practical to consider more molecular and/or process combinations because
of limitations due to computational effort. With low-fidelity material and process models, it is possible to consider a very large
number of decision options as they enable very fast calculations (e.g., pure component GC models). These models are used in
combination with optimization methods and provide useful insights into economics and design solutions that exhibit potential for
further development. However, due to simplifying assumptions in phenomena representation, the obtained results require further
treatment with more refined models prior to implementing design solutions in practice.

Process-relevant material and equipment/plant models may provide a reasonable compromise between modeling fidelity, range
of decision options, and computational intensity. EoS, activity coefficient, and/or (semi-)empirical kinetic models are typical
representatives of models that can be used for process-level evaluation, as they enable the prediction of key properties for process
design. At the process side, equilibrium- or even rate-based models can be used to account for the operating characteristics of all
equipment, whereas superstructure approaches178 can be used with suchmodels to account for all possible stream connections used
in complete flow sheets that can determine the economic behavior of different technologies. However, the utilization of such

models in CAMD problems is not without significant computational challenges.
Classification of Solution Approaches

In the published literature, there are currently few general classifications of the approaches used to solve molecular design problems.
For example, Austin et al.4 propose the generate and test, decomposition, mathematical, and heuristic approaches. Decomposition
indicates the solution of the problem in several steps, but the mathematical and heuristic classes indicate a dependence on the type
of the employed solution algorithm used. As noted by the authors, many mathematical optimization methods include decompo-
sition, hence there are overlaps. Papadopoulos et al.150 propose a classification into simultaneous and integrated approaches,
addressing only the CAMPD problem. In this case, the simultaneous class implies the solution of the problem within algorithmic
steps executed together in one overall execution and may include problem decomposition methods to gradually reduce the

optimization problem size. The integrated class implies a clearly decomposed approach which is executed in computationally
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Fig. 3f0020 Modeling detail versus range of design decisions. This is an open access article distributed under the Creative Commons Attribution License which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0). Adapted from Linke, P.; Papadopoulos, A.I.;
Seferlis, P., Energies 2015, 8(6), 4755–4801.
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independent steps, and there is a systematic way of extracting and transferring information between steps. Finally, Gopinath179

proposes the direct approaches which solve the problemwithout any size reduction and the screening approaches which implement
a decomposition scheme with size reduction.

These different classifications can be reconciled under a classification which includes direct and decomposition approaches.

- Direct approaches address the solution of the complete optimization problem without any intermediate design space reduction.
- Decomposition approaches include the formulation and successive solution of reduced-size subproblems, with adjacent transfer of
information, aiming to facilitate the identification of an optimum solution. The subproblems may be computed simultaneously
within the same software implementation or in separate steps.

Note that the earlier-mentioned classification focuses mainly on optimization-based CAMD. Generate and test approaches (see
“Generate and Test Approaches” section) could be considered as part of both classes, depending on the way they are implemented. If
the optimummolecule is selected by complete enumeration and evaluation of all the feasible structures, then it could be considered
as part of the direct approaches. If the original set of all enumerated structures is reduced based on gradual addition and satisfaction
of different constraints, then it is part of the decomposition approaches. It should be noted that the term “direct approach” does not
refer to the numerical solution scheme of MINLP, that is, to the way that the algorithm handles the problem and objective function,
as defined in Austin et al.149

Direct approaches have the advantage that all design parameters of the problem are considered simultaneously, hence no design
realization is excluded from the optimization search. Such approaches often deal with intensity in computations through
appropriate formulation of the optimization problem structure4 or through models of lower fidelity. However, numerical
difficulties may appear which render the problem intractable, while the reduction in fidelity reduces the confidence in the obtained
results.

Decomposition approaches generally reduce the computational complexity of the problem by gradually removing candidate
solutions which fail to satisfy increasingly stricter constraints in different subproblem formulations. At the same time, the remaining
candidate solutions are introduced and evaluated in other subproblems of different orientation. Decomposition approaches have
been used widely in CAMPD problems. For example, one approach is to identify good candidates in the molecular design space and
then transfer them to process optimization to evaluate their performance. Decomposition approaches focus essentially on the
development of methods that facilitate the identification, extraction, and exploitation of inclusive design information among
subproblems, without prematurely excluding potentially useful options. The latter cannot be guaranteed, as in the case of direct
approaches. However, an approach that starts from subproblems of high combinatorial complexity using low-fidelity models and
gradually proceeds to subproblems of lower combinatorial complexity using higher-fidelity models could produce practically useful

and meaningful design results. Solving these subproblems using a direct approach could be efficient and productive.
Generate and Test Approaches

Generate and test approaches include the enumeration of molecular structures that result from combinations of molecular groups
and the subsequent evaluation of their properties. The main stages of the “generate” step include the group selection, group
characterization, and molecular feasibility rules, to support the synthesis of feasible molecular structures. The main stages of the
“test” step include the GC methods for property estimation, calculated properties, property constraints, and evaluation (perfor-
mance indices).180 The procedure results in the generation of a ranked list of molecular structures.

The approach is first proposed by Gani and Brignole,2 where they highlight the issues that should be taken into account,

especially with respect to the problem combinatorial complexity. Brignole et al.181 provide a formalization of the proposed
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framework with improved procedures for solvent synthesis, solvent evaluation, and solvent screening. Pretel et al.182 propose a
framework for addressing combinatorial complexity through group reduction rules. These include consideration of interaction
parameter availability, elimination of structural and functional isomers, and elimination of groups that affect the chemical or
physical state of the solvents. The work is later extended by Cismondi and Brignole183 to account for branched molecules. Joback184

and Joback and Stephanopoulos185 also propose procedures for reduction of combinatorial complexity through chemical feasibility
constraints. Derringer and Markham186 propose a procedure based on enumeration and constraint satisfaction for selection of
polymer molecules.

Gani et al.187 propose several steps similar to their previous works but allow for the use of optimization after feasible structures
are previously identified through enumeration. Important equilibrium-based constraints are also used in this work regarding the
formation of binary azeotropes, the determination of partial miscibility, and the location of solubility limits. Constantinou et al.188

further extend this approach to systems exhibiting vapor–liquid and solid–liquid equilibria, with applications in polymer design
and foam blowing and cleaning agents for textiles. Harper et al.189 propose a multilevel molecular design approach, where a set of
feasible structures is generated and screened based on first- and second-order groups. After the first two steps, the remaining
structures are represented through atomic connection matrices which include atoms and atom connectivity. Structures that remain
after the previous screening level are passed onto the final level where QMmodels are used. This approach is included in the CAMD
step of a broader framework proposed by Harper and Gani,190 which also includes predesign and postdesign steps. The
predesign step supports the problem formulation through a knowledge base. In this step, the user only specifies the desired task
(e.g., separation of a mixture) and the knowledge base supports the identification of different ways (e.g., processes) to perform the
task. Each available option corresponds to a different CAMD problem formulation, which is proposed by the knowledge base. The
postdesign step includes search in databases for more detailed information regarding the selected molecules. Conte et al.191 expand
the generate and test approach into a generic multistep methodology for the design of formulated products. They propose an
integrated experiment-modeling approach which supports the decomposition of the design problem into a hierarchical sequence of
subproblems (levels). At the outer level, predictive models with wide application are employed to screen out options which are
reduced toward the inner levels. The latter employ special correlations, rigorous models, and/or experiments. The developed
workflows are used in the Virtual Product-Process Design (vPPD) laboratory, a software proposed and developed by Conte
et al.192 with the aim to be able to propose product-process designs and then determine the experiments needed to verify them.
Applications include water-based insect repellent and waterproof sunscreen. The framework is extended by Mattei et al.193 to
emulsion-based formulated products.

Yang and Song194 propose an approach called “classified enumeration” to address the combinatorial complexity in generate and
test approaches. The authors define skeleton groups which are used to generate alkane-based structures and function groups which
substitute the alkane-based groups. By implementing constraints, the skeleton-based structures are pruned and gradually replaced

by skeleton-function containing structures.
Deterministic Optimization Algorithms

Overview of main algorithms
Molecular design optimization problems often include continuous and integer variables in combinations with linear or nonlinear
objective functions and/or constraints. Nonlinear programming (NLP) approaches address the solution of optimization problems
with continuous variables, where the objective function is nonlinear, and/or the feasible region is determined by nonlinear
constraints. The combination of a linear objective function and constraints with continuous and integer optimization variables
results in mixed-integer linear programming (MILP) problem formulations. The presence of integer variables in nonlinear problems
results in mixed-integer nonlinear programming (MINLP) problem formulations. Integer variables indicate discrete decisions,
pertaining to the existence of groups in molecular structures, which are represented by binary variables in MILP and MINLP
formulations.

The development and application of deterministic algorithms for the solution of the optimization problem depends on the
analytical properties of the mathematical model (e.g., monotonicity and convexity). The combinatorial complexity increases with
the addition of more binary variables, whereas the use of detailed models often results in nonlinearities. When the nonlinear
constraints are convex, and the objective function is convex (for a minimization problem), the globally optimum solution may be
identified even for problems of large size. When the objective function or any of the constraints are nonconvex, the optimization
problem may have multiple feasible regions and multiple locally optimum solutions within each region, leading to significant
challenges in identifying the global optimum.

According to Adjiman et al.,195 deterministic algorithms generally approach the optimization problem through the formulation
of subproblems which are easier to solve than the original problem. Subproblems are generated by strategies such as fixing of
variables, relaxing of constraints, and linearizing of nonlinear functions, to name but a few. The algorithms iterate through the
solution of the subproblems to identify upper and lower solution bounds on the optimal solution of the original problem.
Algorithms have been developed to identify globally optimum solutions in both convex and nonconvex MINLP formulations.
While deterministic optimization algorithms are often based on the calculation of derivatives, derivative-free optimization (DFO)
algorithms also exist.196 The main classes of deterministic optimization algorithms and approaches used in computer-aided

molecular design are briefly summarized here. A detailed discussion and classification of derivative-based, deterministic
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optimization algorithms is given in Adjiman et al.195 and Floudas and Gounaris,197 together with a review of more advanced
algorithms. Boukouvala et al.198 and Rios and Sahinidis196 provide reviews of DFO algorithms.

Branch and bound
Branch and bound (BB)199 involves a binary tree where all binary variables are relaxed between 0 and 1 at the initial node. The NLP
problem is then solved, giving a lower bound in the objective function (for a minimization problem). The node is then separated
into two branches representing the discrete values for one binary variable. NLP problems are solved in both nodes and the node
with the best objective is the best option for continuing. The procedure continues, and as new layers are added the final layer
represents the feasible solutions and provides the upper bound to the problem. Nodes can be eliminated if their lower bounds
exceed the current upper bound or if the relaxation is infeasible. The optimum is the solution in the final unrelaxed layer. The aim is
to explore as few nodes as possible. BB principles are used in advanced approaches, such as the SMIN-aBB algorithm195,200 and the
Branch-and-Reduce approach201 used in the BARON algorithm. Both are global optimization algorithms for nonconvex problems,
used in molecular design.

Generalized Benders decomposition
Generalized Benders decomposition (GBD)202 decomposes the problem into primal and master subproblems and the solution is
identified by iterating between the two. The primal problem solves the NLP generating an upper bound to the optimal solution. The
master problem determines the next integer combination and provides a lower bound on the solution. Gradually, the upper bound
decreases and the lower bound increases, hence the algorithm terminates when the two bounds are sufficiently close. An illustration
of how the method is applied to CAMD problems is available in Buxton et al.203

Outer approximation
Outer approximation (OA)204 alternates between master and primal problems to identify upper and lower bounds on the solution
to the MINLP. The upper bound results from the solution of a primal problem which is formulated identically to the primal
problem for GBD. The lower bound is determined by solving a master problem which is an outer linearization of the problem
around the primal solution. Outer approximation with equality relaxation (OA/ER) is proposed by Kocis and Grossmann205 to
allow for nonlinear equality constraints, which are relaxed into inequality constraints. Outer approximation with equality
relaxation with augmented penalty (OA/ER/AP)204 uses a relaxation of the linearizations of the master problem in order to expand
the feasible region. Through this expansion, the probability of cutting part of the feasible region due to one of the linearizations is
reduced. The aim of the algorithm is to avoid convexity assumptions required to find the optimum solution, but this cannot be
guaranteed because part of the feasible region may be eliminated.

Generalized disjunctive programming
Generalized disjunctive programming (GDP)206 is an approach that involves Boolean and continuous variables associated through
disjunctions, algebraic equations, and logical propositions. In the general GDP formulation, the objective is a function of
continuous variables, while there are sets of inequality constraints which represent general constraints that must hold regardless
of the discrete choices. Additionally, there are nonlinear and linear conditional constraints that depend on the discrete decisions, as
represented by the Boolean variables. Conditional constraints are included inside disjunctions and linked with the OR operator. The
disjunctive terms are assigned Boolean variables, whereas each term is active when the corresponding Boolean variable is true.
Propositional logic is used to express logic relations for the Boolean variables.207 GDP formulations are converted into MINLP
through the Big-M (BM) approach208 or the Hull reformulation (HR).209

Interval analysis
Interval analysis (IA)-based algorithms210 are classified by Adjiman et al.195 as part of algorithms used to target globally optimum
solutions in nonconvex MINLP formulations. The underlying principle is similar to BB regarding the successive partitioning of the
solution space and bounding of the objective function within each domain, with branching performed on the discrete and
continuous variables. However, bounds on the problem solution in a given domain are not obtained by optimization.195 Instead,
interval arithmetic is used to compute the range of the objective function in the considered domain. The idea is to continuously
delete parts of the search space with the objective of maintaining a final box of any desired width which contains the global
solution.210

Deterministic derivative-free optimization
Deterministic DFO is a class of algorithms which avoid the calculation of derivatives.196 In several problems, the derivative
information is unavailable, unreliable, or impractical to obtain. In such cases, DFO algorithms generally approach the nonlinear
optimization problem directly or indirectly, based on function evaluations. In the direct approach, mathematical analysis has
established theoretical foundations which guarantee convergence to local first- or second-order stationary points using samples.198

The indirect approach can generally exploit theoretical developments for deterministic MINLP problems. DFO algorithms are
generally classified into local search methods and global search algorithms. Local search methods include direct local search
methods and local model-based search algorithms. Global search methods include deterministic global search algorithms and

global model-based search algorithms. Details are reported in Rios and Sahinidis.196
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Deterministic optimization approaches in molecular design
This section summarizes contributions where deterministic optimization approaches are used in molecular design. The review
focuses on works that proposed deterministic optimization approaches and algorithms. Cases where such algorithms are imple-
mented in various problem classes or applications are further reviewed in subsequent sections. Table 5 provides a summary of the
main features discussed here.

The original use of optimization approaches traces back to the work of Macchietto et al.,173 who use a continuous optimization
formulation which results in a relaxed solution, representing the molecule through a noninteger number of groups. Integer forcing
constraints have to be added, but the resulting MINLP cannot be solved rigorously, hence the solvent optimality cannot be
guaranteed. This is addressed by Odele and Macchietto,160 who use an MINLP solver based on the OA/AP approach.204 Meanwhile,
Naser and Fournier174 propose a continuous optimization representation of the CAMD problem, based on the concept of the
“theoretical molecule” that results from the continuous representation of the molecular composition. They also propose different
procedures to address (a) the molecular feasibility constraints in view of the continuous molecular representation and (b) the
possibility of having discontinuities due to the appearance of multiple phases in the liquid–liquid equilibrium problem that they
investigate. In case (a), they generate five classes of groups and assign different UNIFAC groups to them. They further deduce
numeric inequality constraints which provide a region of feasibility whose nonzero width provides fuzzy feasibility and whose zero
width provides strict feasibility. In case (b), they propose the “distance from a target” concept. They define an ideal theoretical
separation target and minimize the distance from this target, as their optimization objective. In doing so, they make the equilibrium
relationship dependent only on the molecular structure. The problem is solved through successive quadratic programming (SQP)
based on Schittkowski.211

Klein et al.212 propose a mathematical CAMD formulation, including multiple linear constraints and one nonlinear constraint.
The discontinuities observed in the derivatives due to having the number of solvents as a design variable could not be addressed
through standard nonlinear optimization at the time. The authors use the successive regression and linear programming (SRLP)213

approach to overcome this issue. The blend design problem is also addressed, while the method is then implemented as the fourth
part of a four-stage approach214 which first reduces the design space by identifying fewer feasible candidates and then addresses the
identification of the optimum blend.

To address problems due to nonconvexities, Maranas215 proposes to transform nonlinear structure–property relations into an
equivalent MILP problem. This is approached through the expression of integer variables as a linear combination of binary variables

and the replacement of continuous and binary variable products with linear inequality constraints. The approach is extended to
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Table 5 Main features of deterministic optimization approaches used in molecular design problems

Authors Optimization methods Approach

Macchietto et al.173 NLP Decomposition
Naser and Fournier174 NLP, SQP Direct
Odele and Macchietto160 MINLP, OA/AP Direct
Klein et al.212 and Gani and Fredenslund214 SRLP Direct
Maranas215 and Raman and Maranas10 Transformation of MINLP into an equivalent MILP problem Direct
Camarda and Maranas216 and Maranas168 Convexification of nonlinear terms, MINLP, OA/AP Direct
Duvedi and Achenie,217,218 Churi and
Achenie,219 Wang and Achenie220

MINLP, OA/AP Direct

Sinha et al.221 and Ostrovsky et al.222 IA global optimization for nonconvex problems through BB with linear
underestimators and splitting functions for branching reduction

Direct

Friedler et al.223 MINLP, BB Direct
Achenie and Sinha224 and Sinha et al.221 IA global optimization, LIBRA algorithm Direct
Karunanithi et al.226–228 General framework for MINLP formulations Decomposition
Vaidyanathan and El-Halwagi229 IA global optimization for nonconvex problems with lower bound tests and

distrust-region method, GINO software as local optimizer
Direct

Hostrup et al.231 Hybrid approach, MINLP, inner NLP, outer MILP Decomposition
Zhang et al.232 General MILP/MINLP formulation Direct
Buxton et al.203 and Giovanoglou et al.233 MINLP, MIDO, GBD Decomposition
Sheldon et al.234 MINLP, OA/ER Direct
Siougkrou159 MINLP, SMIN-aBB Direct
Burger et al.237 MINLP, OA/ER/AP Decomposition, direct solution

in each of two stages
Jonuzaj et al.238,239 MINLP, GDP, BM Direct
Jonuzaj and Adjiman240 MINLP, GDP, HR Direct
Gopinath et al.241 and Gopinath179 MINLP, modified OA Decomposition
Sahinidis et al.242 Branch-and-reduce global optimization, BARON Direct
Samudra and Sahinidis158,243 MILP Decomposition
Austin et al.149 DFO, MILP, and BB (BARON) for continuous nonconvex problem Direct
Cheng and Wang244 MIHDE and MISQP Direct
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more complex molecular representations, considering nonlinearities introduced by topological indices.10 Camarda and Maranas216

employ the topological index representation and propose a MINLP CAMD formulation which includes only linear and convex
nonlinear relations. The problem is solved using the OA/AP approach. Maranas168 addresses the CAMuD problem by introducing
the deterministic equivalent chance constraint representation to transform the original nonlinear stochastic formulation into a
deterministic MINLP problem with linear binary and convex continuous parts.

Duvedi and Achenie217 propose an MINLP formulation which includes nonlinear constraints with respect to integer variables.
This is addressed by defining new continuous variables and new constraints in which these variables are set equal to the integer
variables, thereby restricting the nonlinearity to the continuous variables only. The problem is solved with OA/AP. The approach is
extended to the design of refrigerant blends by Duvedi and Achenie218 for a single evaporator cycle and dual evaporator cycle by
Churi and Achenie219 and to the design of extractive fermentation solvents by Wang and Achenie.220 Sinha et al.221 and Ostrovsky
et al.222 propose modifications in a BB algorithm to identify globally optimum solutions in CAMD. They introduce splitting
functions to reduce the number of branching nodes and further propose a strategy for the construction of linear underestimators
relevant to solvent design problems. Friedler et al.223 propose a BB approach to CAMD in order to overcome limitations of the
generate and test approach.

Achenie and Sinha224 and Sinha et al.225 develop the LIBRA algorithm which is based on global optimization using IA. They
propose underestimators and splitting functions to identify globally optimum solutions through a BB algorithm. Considering water
as the cosolvent, the authors either find the globally optimum concentration for seven binary mixtures, using a basis set of seven
candidates, or find the globally optimumwater–solvent pair and concentration in a second case study. Karunanithi et al.226 propose
a decomposition-based approach applied for single molecules and mixtures consisting of constraint satisfaction steps and an
optimum design step which is formulated as an MINLP. Candidate solvents go through successive steps, hence a reduction of
feasible solutions is achieved. The method enables the consideration of an optimum process design step as well (CAMPD). The
problem is implemented to liquid–liquid extraction solvents and to pharmaceuticals, while the method is also implemented to
crystallization solvent design.227,228

Vaidyanathan and El-Halwagi229 propose the use of global optimization based on IA for mixture design. The approach
eliminates parts of the search space in order to obtain a domain that contains the globally optimum solution. The authors employ
the algorithm of Vaidyanathan and El-Halwagi210 which includes a lower bound test as well as a “distrust-region” method for
deleting infeasible subspaces. The GINO software230 is used as a local optimizer.

Hostrup et al.231 address CAMPD and propose a stepwise procedure to systematically reduce the process and molecular search
space based on the approach of Harper et al.189 The process and molecular candidates in the final step are identified using an inner
loop NLP and an outer loop MILP, unless too few options enable complete enumeration. For fixed binary variables, the inner NLP
identifies the optimum solution of the continuous formulation. At this solution, the nonlinear equations are linearized, and the
solution is communicated to the outer loopMILP to generate new values for the binary variables. The overall approach is a generate-
and-test/optimization hybrid. Zhang et al.232 develop a CAMDmethodology with the aim to extend the feasible space of a standard
CAMD problem by including both first- and second-order group information in the MILP/MINLP formulations.

Buxton et al.203 address the CAMbPD problem through a decomposition approach, algorithmically implemented in simulta-
neous calculations. An iterative MINLP solution scheme is used based on GBD, where in eachmajor iteration of the algorithm a new
solvent mixture is generated. The mixture is examined in a series of property and mass transfer feasibility tests. Mixtures that satisfy
these tests go through process design. The approach is extended by Giovanoglou et al.233 to address mixed-integer dynamic
optimization (MIDO) problems for simultaneous batch separation and solvent design. Sheldon et al.234 address a QM-CAMD
problem. They formulate an MINLP with nonlinear equality constraints where the objective function value and its gradients are
calculated through the QM software. The gradients of the nonlinear constraints and the Lagrange multipliers of the nonlinear
equality constraints are calculated via SNOPT.235 The MINLP is approached through OA/ER, without the need for the AP version.
The master and primal problems are solved in two different computers with automated transfer of information. Siougkrou159

addresses the QM-computer-aided molecular design for reactions (QM-CAMRD) problem through anMINLP formulation using the
SMIN-aBB algorithm, a deterministic global branch-and-bound optimization algorithm for nonconvex MINLP problems with
general nonconvexities in the continuous variables and linear and bilinear participation of the binary variables. The problem
addressed by Siougkrou159 is a bi-level optimization problem, where internal geometry optimization is required in addition to
identifying the optimum solvent. In this case, the geometry is assumed to be fixed when moving from the gas to the liquid phase,
hence the problem is transformed to single-level optimization. To address computational complexities from full QM calculations,
Siougkrou159 derives and employs a Kriging-based surrogate model236 in place of the full QMmodel. The resulting MINLP is solved
through BARON. Burger et al.237 address the CAMPD problem though the HiOpt approach where initial molecular and process
solutions are derived using low-fidelity models at the process stage. These solutions are used as starting points for the subsequent
CAMPD problem which employs process models of higher fidelity. First-stage solutions are extracted using MOO. The problem is
solved using OA/ER/AP. Jonuzaj et al.238 propose a GDP framework to address the CAMbD problem. In the proposed formulation,
they account for specific constraint characteristics; those that do not depend on the logic conditions are formulated as general
constraints, whereas those that depend on the logic conditions, such as on the assignment of compounds or on the number of
components in a mixture, are formulated within the disjunctions as conditional constraints. The GDP is transformed into MINLP
through the BM formulation. This work initially addresses blends, but is then extended to mixtures by Jonuzaj et al.239 Jonuzaj and
Adjiman240 extend the blend design work by considering the HR approach for the transformation of the GDP to an MINLP and find

that it leads to bounds that are at least as tight as or tighter than the BM approach, at the expense of introducing new variables and
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constraints. Gopinath et al.241 address the CAMPD problem by proposing a modified OA algorithm. Tests that remove infeasible
regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove
subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are
violated. The work is extended to cases including both continuous and discrete variables in the process synthesis domain.179

Sahinidis et al.242 propose a global optimization approach to CAMD based on an algorithm that provides all feasible solutions
to this formulation through the implicit enumeration of a single branch-and-reduce tree. Samudra and Sahinidis158 propose a
multistage CAMD framework. The first stage employs approximate GCmodels to obtain molecular structures that fit desired design
targets. The second stage identifies isomers for these structures, with structure–property relations providing more accurate property
predictions. The third stage uses problem-specific models to further refine predictions. The proposed decomposition allows the
formulation and solution of MILP subproblems, hence avoiding MINLP formulations. Additional features include the incorpora-
tion of several graph theoretic and linear integer programming models, which are developed to address the systematic generation of
isomers and avoid redundancy in molecule graphs. The method is applied to the design of heat-transfer fluids for refrigeration.243

Austin et al.149 propose a multistage approach for CAMbD using DFO. Initially, the DFO produces trial points which are used to
generate upper and lower property bounds. Molecular compositions (i.e., first-order groups and number of appearances of each
group in the composition) are proposed through CAMD within these property bounds based on minimization of their distance
from the trial point. These compositions are then transformed into structures using higher-order models and the one with the
minimum distance from the trial point is selected. In the next step, the selected structure is used as the component that is designed
within the mixture and the optimum concentration is specified for all mixture components. This step is a continuous, nonconvex
NLP problem. The obtained objective function value is communicated to the DFO, where if the termination criteria are not satisfied
the DFO proposes a new trial point. The advantage of this approach is that it solves CAMD problems within small search spaces
using MILP technology, while the continuous nonconvex mixture concentration problem is decoupled.

Cheng and Wang244 address the CAMPD problem by proposing an approach where mixed-integer hybrid differential evolution
(MIHDE)245 is firstly used to find a feasible solution, which is then used as the initial starting point for a trust region sequential

quadratic programming algorithm (MISQP).246
Stochastic Optimization Algorithms

Overview of main algorithmic concepts
Stochastic optimization algorithms are used to solve MI(N)LP problems without considering derivative information. They emulate
natural processes in order to explore the solution space of a given problem. The optimum solution is identified after a series of
biased probabilistic transformations of an initial problem instance. The introduced bias is often cast as descent bias (i.e., based on
the objective function), memory bias (i.e., based on previously made decisions), or experience bias (i.e., based on prior
performance).247

Stochastic optimization algorithms generally require little or no assumptions on the optimization problem characteristics and
structure (e.g., monotonicity and convexity), while they can even be applied to ill-structured problems for which no efficient local
search procedures exist.248 These are useful features for molecular design problems because the search space may be discontinuous
(e.g., due to the appearance and disappearance of phases as molecular composition varies) and nonconvex, which represent
significant challenges for deterministic algorithms. Furthermore, they avoid locally optimum solutions through mechanisms which
are based on the probabilistic acceptance of solutions that fail to improve the objective function. This feature is called diversification
and enables efficient exploration of the search space. They also include mechanisms to intensify the search around promising
solutions as the optimization search proceeds. Balancing diversification and intensification is one of the important challenges in
such algorithms,247 together with the lack of guarantees regarding the optimality of the obtained solutions. The latter is evaluated
using statistical procedures.249

Genetic algorithms (GA)
GA250 are a metaheuristic used in several molecular design implementations, with contributions summarized in Table 6. It is based
on the Darwinianmodel of natural selection and evolution.251 Chromosomes are used to represent molecular structures, comprised
of genes which represent functional groups. The mapping of structural molecular information in a format that can be used in GA
operations is called molecular encoding. Efficient encoding should facilitate new individuals via genetic operations while also
favoring the decoding procedure where individual fitness is evaluated.252 An initial population of chromosomes representing the
first generation is evolved randomly to successive generations through genetic operators which serve different purposes. Selection is
an operator where pairs are randomly selected from the population and only the fittest of each pair are allowed tomate. Each pair of
parents creates one or more children that have some of the characteristics of each one of the parents. Crossover is another operator
where the genetic material of the fittest individuals is randomly combined. Mutation is also used to introduce new solutions into the
search, while elitism is used to enhance intensification around promising solutions by passing them to the subsequent generation.
There are several different genetic operators, discussed in Patkar and Venkatasubramanian.251

Venkatasubramanian et al.253 present a GA approach for CAMD, addressing the case of polymer design where there is a need of
repeating monomer units. They employ a symbolic molecular encoding scheme where elemental, substructural, and monomer
units are represented by genes. Van Dyk and Nieuwoudt254 employ GA to design solvents for extractive distillation. They use

UNIFAC groups and note that genes are linearly combined to construct chromosomes, but they need not be linear themselves. This
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Table 6t0035 Main features of GA approaches used in molecular design

Author Encoding Operators

Venkatasubramanian et al.253,264 and
Pakar and Venkatasubramanian251

String of symbols, double-valence groups are main-chain
blocks, single-valence groups are side-chain blocks

Single-point crossover, main-chain and side-chain
mutation, insertion and deletion, blending, hop-
mutation

Van Dyk and Nieuwoudt254 UNIFAC groups, single-, double-, and zero-valence blocks Point mutation, crossover, insertion and deletion
Lehmann and Maranas172 Bit strings as one-dimensional fields of binary elements Selection, crossover, mutation
Xu and Diwekar255,256 Element vectors with a predefined maximum number of

allowed groups
Tournament selection, uniform crossover, jump mutation

Heintz et al.153 Graph-based encoding through adjacency matrix Mutation, crossover, insertion, deletion, substitution
Herring and Eden257 Graph-based encoding Crossover, reduction, insertion, fragment mutation
Zhou et al.252 Tree structures stored as a dynamic list with UNIFAC

groups as the tree nodes (building blocks)
Crossover, mutation, insertion, deletion

Scheffczyk et al.259 Molecules as a set of fragments using a SMILES-based
representation

Crossover, mutation

Liu et al.258 Similar to Xu and Diwekar255 Selection, crossover, mutation, repair
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is a useful feature to represent branched or cyclic compounds. They use three types of genes, namely start/end genes with only one
free bond, middle genes with two free bonds, and genes without free bonds. Lehmann and Maranas172 use GA in an approach that
combines QMmodels with GC. Xu and Diwekar255,256 employ GA for solvent design under uncertainty. They develop strategies to
ensure that when crossover is applied to molecules with different lengths, longer structures do not remain without changes, hence
the search remains wide and efficient. Heintz et al.153 used GA for mixture design, based on a graph representation of the molecules,
in the form of an adjacency matrix. Herring and Eden257 employ spatial fragment-based descriptors to generate candidate solutions
within a population, evolved, and evaluated using GA operations. A graph-based molecular encoding is used, hence customized
crossover and mutation operators are developed to be compatible with this representation. Zhou et al.252 use GA for the design of
solvents for liquid-phase reactions. They propose a novel-encoding scheme where all the important structural and group informa-
tion for the molecule is stored as a dynamic list. This facilitates the genetic operations and the subsequent decoding. Liu et al.258

propose a hybrid formulation between GA and simulated annealing (SA). The aim of this work is to exploit the intense
diversification accomplished through GA with the intensification capabilities of SA. The encoding of the molecules is similar to
Xu and Diwekar.255 Scheffczyk et al.259 use GA to integrate QM information into CAMD. A fragment-based molecular description is
used, where molecular structures are decomposed into basic fragments and each fragment is described by a unique SMILES-based
representation.260 The GA is based on the LEA261 and the LEA3D262 algorithms used for drug design. It is worth noting that
computer-aided drug design (CADD) uses similar approaches and algorithms to CAMD (e.g., reverse design of molecules,
evolutionary algorithms, and MOO—reviewed by Devi et al.263) but evolved independently of CAMD. In CADD problems,
property prediction models and requirements are often different to those used in CAMD, hence they are not reviewed here.

Simulated annealing
SA265 is an algorithm that emulates the annealing of metals. Algorithmically, it is a statistical cooling optimization technique that
generates a biased random search and employs Monte Carlo simulations under a variable probability schedule.249 The algorithm
starts from an initial problem state (molecular structure) at a high temperature. The initial structure is randomly transformed into a
number of successive structures within each temperature interval, always using the previously accepted structure as a starting point.
Each structure enables the calculation of a molecular or other index which is used as an objective function. The latter is evaluated
using the Metropolis criterion,266 whereby structures that improve the objective function are directly accepted, while structures that
deteriorate the objective function are accepted with a certain probability. This operation supports diversification and facilitates the
avoidance of local optima. After a predetermined number of iterations (Markov chain length), the temperature decreases. This
procedure is repeated until certain termination criteria are satisfied. The acceptance rate of each newly generated structure is
gradually reduced at lower temperatures, giving rise to increasingly intensified search around solutions that improve the objective
function.

SA-based CAMD is proposed by Marcoulaki and Kokossis267,268 and applied to solvent and refrigerant design by Marcoulaki and
Kokossis269 and Marcoulaki et al.270 Molecular structures are defined as the product of a vector indicating the type of UNIFAC
functional groups and a diagonal matrix indicating the number of appearances of the group in the molecule. The authors provide a
systematic approach for the evolution of the molecular structures during optimization in view of different connectivity constraints.
Operators for new structures include expansion, contraction, and alteration. Papadopoulos and Linke161 extend the algorithm of
Marcoulaki and Kokossis270 into MOO SA with applications in various fields.150 Ourique and Telles271 also use SA for CAMD using
amolecular graph representation in the form of a structure–composition matrix, similar to the one employed by Heintz et al.153 (see
“Genetic algorithms” section). Kim and Diwekar272 apply SA in CAMuD in the form of the stochastic annealing algorithm.167 The
work is also extended in the case of the CAMuPD problem.273 SA is also used by Song and Song274 and Song et al.275 for the design

of separation solvents.
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Tabu search
Tabu search (TS)275 does not mimic a physical system like the previous algorithms. In principle, the algorithm applies a best-
improvement, local search and uses a short-term memory to escape from local minima.247 The short-term memory is implemented
as a tabu list that registers recent solutions (molecular structures) which should not be revisited for desired number of iterations. At
each iteration, the best molecular structure is chosen as the new current structure. Additionally, this structure is added to the tabu
list, and one of the structures that were already in the tabu list is removed. Aspiration criteria allow the tabu list to be overridden if
either the new solution is the best solution so far or all neighborhood solutions trialed are on the tabu list.276

Chavali et al.277 use TS for the design of transition metal catalysts. The properties of the catalysts are predicted using connectivity
index descriptors which are used within specifically derived structure–property correlations. Lin et al.278 propose a generic
framework for CAMD using TS where molecules are represented through connectivity indices and neighbor generation operators
are defined, including operators such as replace, insert, delete, swap, and move. The proposed TS approach is applied to the design
of cross-linked polymer networks,279 ionic liquids,280 and visible light photosensitizers for dental adhesive.281

Ant colony optimization
Ant colony optimization (ACO) is an algorithm inspired by the foraging behavior of real ants.247 The underlying idea is that ants try
to find the shortest paths between food sources and their nest. The paths are tracked by ants through the pheromone they lay as they
move. Increasing concentrations of pheromone indicate paths worth following, as they are likely to lead to food sources. This
collective behavior leads to the probabilistic emergence of the minimum length of paths. Artificial ants used in optimization choose
their destination with a probability that is a function of the associated pheromone value. They are further forced to move to regions
they have not visited before (e.g., through the use of tabu lists), while after every iteration is completed they lay an amount of
pheromone that is a function of the improvement of the fitness of the solution. Diversification can be enhanced through trail
diffusion operations in order to generate new regions out of the existing ones.249

ACO has been first proposed for CAMD by Gebreslassie and Diwekar282 in the form of the efficient ACO (EACO) algorithm.283

In EACO, the random samples required by the algorithmic operations are drawn using Hammersley284 sampling, a method that
enables the derivation of a uniformly distributed sampling pattern. The work is generalized by Gebreslassie and Diwekar,285 who
develop a general multiagent optimization framework which can consider various different algorithms. Further applications of
EACO have been reported by Mukherjee et al.286 and Doshi et al.287 in the design of adsorbents for metal ion removal from water
and by Benavides et al.288,289 in the design of adsorbents for adsorption of natural occurring radioactive material (NORM) of

natural gas fracking waste.
Property Clustering Approaches

Property clustering has been first proposed by Shelley and El-Halwagi290 as a tool for process design. The underlying idea is that
tracking of components is not necessary in many processes, especially in those where there are numerous different species that vary
in composition and concentration among different streams. Instead, it is both necessary and easier to track component properties
for measuring process performance. Developing design procedures that account for properties is not as straightforward as using
components; properties are not conserved whereas components are. Shelley and El-Halwagi290 propose the concept of clusters
which are formal conserved quantities that are related to nonconserved properties. Essentially, clusters support the conserved
“mixing” of properties calculated from the mixing of process streams. Intrastream clusters are weighted sums of the component
properties contained in a stream. The weights are the fractional contributions of a stream into the total flowrate of the mixture.
Conservation laws apply both at intrastream and interstream property mixing. The interstream conservation allows for lever-arm
rules to apply, so the clusters may be summed based on their contribution when two streams are mixed. Up to three clusters may be
plotted in a ternary diagram, enabling visual tracking of properties.291 This idea applies in sink-source mapping at the process level.

Eden et al.292 propose this approach for use in CAMPD, where the property clustering is used for the process targeting and design
part of CAMPD (details are reported in “Property Clustering and/or Reverse Formulations” section). Eljack and Eden293 built this
concept in order to exploit it in GC-based CAMD. Clusters represent the “mixing” of properties which are calculated by combining
functional groups. The development of clusters is described as follows:

cM
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where cj
M(Pj) is the molecular property operator of the jth property, ng is the number of type g groups in the molecule, Pjg is the
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Fig. 4f0025 Example of visual CAMD using the property clustering approach.293 Reproduced from Eljack, F.T.; Eden, M.R., Comput. Chem. Eng. 2008, 32(12),
3002–3010 by permission of Elsevier.
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scaling purposes, AUPM is an augmented property index for each molecule, and Cj is the cluster for property j. Eq. (37) is an
expression of the right-hand side of Eq. (1) (assuming only first-order groups). This means that the left-hand side may still be
nonlinear, although the clusters are based on linear additive rules. This is a key feature of the property clustering approach. Intra-
and intermolecular conservation relationships also apply, as well as rules (e.g., for adding groups and chemical feasibility) detailed
in Eljack294 and Eljack and Eden.293 Fig. 4 shows an example of CAMD using a visual clustering representation. The blue-dashed
lines indicate feasibility limits based on desired constraints. Red dots indicate functional groups, whereas green dots indicate larger
molecular fragments (and eventually a complete molecule) that result from linear addition of functional groups. The location of the
fragments in the diagram is deduced from lever-arm calculations. Numbers in brackets indicate valences.

Research work pertaining to the use of the method in CAMPD and CAMbD is reported in “Property Clustering and/or Reverse
Formulations” and “Mixture and Blend Design” sections, respectively. Chemmangattuvalappil et al.295 propose the inclusion of
second-order groups in molecular property clustering CAMD. They develop rules which determine the consideration of first-
order groups as building blocks to second-order ones. They also propose an algebraic approach for solving molecular design
problems in the cluster domain and introduce a systematic way to generate all possible molecular structures with a given set of
property constraints. Chemmangattuvalappil et al.296 introduce molecular signature descriptors in the molecular property
clustering framework. They develop an algorithm to account for different quantitative structure–activity relationship (QSAR)/
QSPR expressions based on multiple topological indices for molecular design. In this new algorithm, GC methods are coupled
with expressions of topological indices on a common property platform. Chemmangattuvalappil and Eden297 further extend
their work to account for the simultaneous use of topological indices with different levels of structural information. A new
CAMD algorithm is further proposed to simultaneously consider GC models with higher-order contributions along with
different varieties of topological indices. The algorithm is able to track changes in the properties that occur as a result of
reactions. Hada et al.298 use data obtained from infrared spectroscopy to develop latent variable property models which are used
for the design of biofuel additives. The models are developed using techniques based on principal components and are
transformed into property clustering operators, which are used in CAMD. This work is extended by Hada et al.299 by introducing
QM-based calculations to supplement experimental IR data. Hada et al.300 further use chemometric techniques and the property
clustering approach for blend and mixture design purposes. Latent variable property models are developed that simultaneously
incorporate the properties of the raw materials, their blend ratios, and the process conditions. The identified solution is used as
the target in the property clustering step to solve the mixture formulation problem in a reduced dimensional property space.
Woo et al.301 develop a method for property model derivation based on factorial design to estimate the relationships between
properties and to determine the underlying interactions between more than two factors with the target property. The method is

implemented using the approach of Chemmangattuvalappil et al.296
Merits and Shortcomings of Solution Approaches

Table 7 provides a summary of the merits and shortcomings of different solution approaches used in molecular design.
Generate and test approaches provide the opportunity to incorporate expert knowledge in order to rationally reduce the space of

molecular candidates. This reduction allows the solution of easier optimization problems in the remaining space, while it also

supports the identification of practically realizable solutions. When fewer candidates are available, they can be evaluated easier
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Table 7t0040 Summary of merits and shortcomings of CAMD solution approaches

Approach Merits Shortcomings

Generate and
test

Easy incorporation of expert knowledge and identification of practical
solutions

Challenging enumeration of large molecular design spaces

Deterministic
optimization

Fewer function evaluations than stochastic methods to reach optimum,
analytical mathematical determination of local or global optimum,
confidence results in problems where global optimum can be
guaranteed

Derivative transformations, difficult simulation initialization in
nonconvex models, mechanisms to avoid local optima is an active
research field, locally optimum solutions may differ significantly,
require knowledge of analytical problem properties (e.g., convexity
and monotonicity)

Stochastic
optimization

Include mechanisms to target globally optimum solution, no need for
derivative calculations, able to handle discontinuities and nonconvex
problems, no need for knowledge of problem structure, rich design
insights from close but different optimum solutions

Larger number of function evaluations to identify optimum solution,
statistical assessment of solution optimality

Property
clustering

Insightful visualization of problem and solutions, easy avoidance of
infeasible solutions, direct links with visualization approach applied
in process design, algebraic representations available for more than
three design performance criteria

Visualization advantage available for up to three performance criteria,
efficient enumeration of candidate structures required when multiple
molecular building blocks are considered
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using higher-fidelity molecular or process models. On the other hand, the complete enumeration of large molecular spaces is
computationally challenging.

Deterministic optimization methods are based on analytical properties (e.g., convexity and monotonicity) of the problem to
generate a deterministic sequence of points converging to a local or global optimum.248 They provide insights regarding the local or
global optimality of a solution through analytical mathematical conditions. Local optimization approaches require a lower number
of objective function evaluations to reach an optimum solution than stochastic methods. Global optimization approaches for
nonconvex problems require computations of similar intensity to stochastic methods. For example, although a BB-based approach
is effective in locating the global solution in MINLP problems, it can be computationally expensive, because all binary variables are
used as branching variables, and their number can reach several hundred.159 General limitations involve the computationally
intensive use of derivative transformations and difficulties in the initialization of simulations when complex models are considered.
A fundamental issue of deterministic methods is to transcend local optimality,248 hence the development of mechanisms to prevent
the convergence in local optima in highly nonconvex problems is also a very active research field.197 SMIN-aBB and BARON are
notable examples of deterministic algorithms that target the global optimum of nonconvex problems.195,302 Recent developments
in DFO approaches reduce or remove the need for challenging derivative transformation and provide an avenue for convergence of
research efforts between deterministic and stochastic algorithms.198

Stochastic algorithms can be classified into trajectory- and population-based methods. SA follows a single-point search approach
whereby an initial solution is evolved through successive alterations during optimization. TS allows the generation and assessment
of multiple candidate solutions in the same iteration. Both SA and TS are classified as trajectory methods, meaning that the
algorithm starts from an initial state and describes a trajectory in the state space.247 Successor solutions are generally implemented
as small random increments of the preceding solutions, making the generated trajectories easy to track, review, and manipulate
through the algorithmic control parameters. The latter are few; the Markov chain length and the cooling rate are the main control
parameters in SA, whereas the tabu tenure (list length) and type of aspiration criteria are the corresponding parameters in TS.

GA and ACO are population-based methods where successor solutions are often weighted averages (e.g., through crossover and
trail diffusion) or random instances (e.g., through mutation) of preceding solutions. Solution tracking is therefore difficult, while
the control parameters are more than SA and TS. GA control parameters include the population number, the operator type
(e.g., crossover, jumpmutation, and creep mutation) and rate, and the population and solution management schemes (e.g., elitism
and niching).249 ACO also includes the population number, the operator type (e.g., pheromone evaporation and trail diffusion)
and rates, and the tabu tenure. In process synthesis experiments including both discrete and continuous variables, Papadopoulos
and Linke249 found that SA and ACO have an equivalent performance in terms of solution quality, with ACO being faster. GA is
always able to identify promising solution paths early-on in the search, but intensification (local search) around them is challenging
and often more time-consuming than ACO and SA. A comparison between TS and SA in complex process synthesis problems178

shows that both algorithms reach solutions of similar quality, but TS is faster.
Property clustering methods provide an insightful representation of the CAMD problem and of the obtained solutions. Their

visualization capabilities support the exploration of multiple different options, other than the ones indicated by the design criteria.
This allows the introduction of expert knowledge and the refinement of the design/selection criteria or property prediction models
even during the search. The clear visualization of the feasibility space is also important. The combination of a clustering approach
for the identification of desired process options for each investigated molecule is also straightforward as the two approaches are
linked directly through component properties. On the other hand, visualization diagrams are limited to three performance criteria.

The consideration of more criteria is often necessary to identify optimum CAMD solutions. Although algebraic representation
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approaches of the method address this issue, the visualization advantages are removed. Furthermore, the visualization of the
feasibility space and the lever-arm approach to molecular design reduce the investigation of redundant candidates, but the

availability of multiple functional groups as molecular building blocks still requires the use of an efficient enumeration approach.
Methodologies for Solution of CAMPD Problems

The CAMPD problem has been approached using several different methodologies which employ all the solution approaches
discussed in the previous section. CAMPD research contributions are summarized in Tables 8 and 9. Examples of applications are
given in certain cases to highlight key features of the design problem. The main aim of this section is to discuss major methodo-
logical contributions, hence further details regarding the applications or other developments are discussed in “Methodologies for
Various Problem Classes,” “Methodologies for Reactive Systems or QM-Based Approaches,” and “Applications” sections. Method-
ologies for CAMPD of reactive systems or implementations that use QM models are discussed separately in “Methodologies for

Reactive Systems or QM-Based Approaches” section.
Generate and Test Approaches

Jaksland and Gani303 propose a generic approach for CAMPD problems pertaining to solvent and separation process selection and
design. The aim of the work is mainly to reduce the solvent and process options into a smaller set of feasible candidates based on
thermodynamic insights. The separation technology itself is considered a decision parameter. Level 1 of the proposed approach
employs pure component properties to identify feasible separation technologies. Level 2 employs pure component and mixture
properties for separation task selection/sequencing, separation technology validation, and process/product design. After applying
both levels of the methodology, a feasible flow sheet is generated together with alternatives. The flow sheet includes selected and
sequenced separation tasks with corresponding separation techniques, estimates of the conditions of operation, and a selected
solvent. The flow sheet is validated through process simulation.

Hostrup et al.231 propose a multilevel procedure which includes seven main levels. An initial pool of separation technologies is
gradually refined based on pure component and binary mixture tests up to level 4. In levels 5 and 6, solvents are designed using the
CAMD algorithm of Harper et al.189 and further mixture tests reduce potential solvent and process flow sheet options. The
remaining process and solvent options are solved in level 7 as an optimization problem using an inner loop NLP and an outer

loop MILP. These ideas are all expanded and used in the vPPD laboratory.191,192
Deterministic Optimization Approaches

Hamad and El-Halwagi304 propose the simultaneous design of solvents and mass separation networks. The optimization of the
mass exchange networks is based on process insights gained by application of mass integration principles. The resulting nonlinear
thermodynamic feasibility constraints and overall material balance of the separation network as well as the material property
estimation models are linearized using various different techniques. The study demonstrates that the optimal solvents are not the
ones with the optimal properties or cost but instead compromises in both criteria. Pistikopoulos and Stefanis305 propose the
selection of an optimal solvent candidate based on global plant-wide process and environmental constraints and apply their
methodology to the design of absorption processes in the course of solvent design. Buxton et al.203 generalize this approach in a
stepwise formulation where solvent mixtures are designed through CAMbPD embedding tests to reduce the potential options using
equilibrium-based assessment. Few feasible options are then considered with respect to optimum process operation for a fixed
process structure. This methodology is used by Giovanoglou et al.233 for design of batch separation processes. Burger et al.237

address CAMPD through the HiOpt method discussed previously. The solvent design options are generated and evaluated through
GCs using the SAFT-g-Mie EoS for prediction of vapor–liquid equilibria. The process design space includes operating parameters for
a fixed process structure. The embedding of tests into CAMPD is proposed by Gopinath et al.241 and Gopinath,179 who develop inlet
stream phase stability tests after isothermal expansion, solvent handling, separation, and purification feasibility tests to eliminate
infeasible areas of the CAMPD space. The approach is extended to molecular design and process synthesis problems where process
structural decisions are also considered. Duvedi and Achenie217, Churi and Achenie219, Wang and Achenie,220 Achenie and
Sinha,224 Karunanithi et al.,226,227 as well as Cheng and Wang244,306,307 have used advanced optimization algorithms considering
process constraints in solvent design. Details are reported in “Deterministic optimization approaches in molecular design” section.

Martin and Martinez308 address the problem of identifying optimum blends and manufacturing conditions for development of
detergents. The problem includes product performance constraints through a model regressed from empirical observations,
environmental constraints, as well as manufacturing process constraints. An MINLP formulation is used and solved using the
BARON algorithm. Fung et al.309 propose a generic CAMPD approach for product design which goes beyond the production process
boundaries and accounts for product-use conditions, product quality, price and market share, product cost, manufacturing cost,
economic analysis, and product commercialization. Appropriate models are considered for all these aspects and software is
proposed which could perform such calculations. One of the case studies for die attach adhesive design includes a complete

CAMPD MINLP formulation solved using BARON.
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Table 8t0045 Overview of CAMPD approaches using generate and test methods or deterministic optimization algorithms

References Key features

Generate and test approaches
Jaksland and Gani,303 Hostrup et al.232 Multilevel problem decomposition to gradually reduce options, feasible separation process

tasks identified through knowledge-based support, reduced superstructure of potential
processing options, generate and test approach for molecular design, final
solvent–process flow sheet set optimized

Conte et al.191,192 vPPD laboratory, multistep methodology to screen and verify options in formulated product
design

Deterministic optimization approaches
Hamad and El-Halwagi304 Synthesis of solvents and mass exchange networks, linearization of the nonlinear problem,

determination of optimum solvent structures and process characteristics, direct problem
solution

Pistikopoulos and Stefanis,305 Buxton et al.,203 Giovanoglou
et al.233

Decomposition approach to gradually identify feasible solvent mixtures which are then tested
in process design, environmental constraints considered, application of approach in batch
separation processes using dynamic models

Burger et al.237 Solution of complete CAMPD problem using initial guesses from a previous stage solving
CAMPD using low-fidelity models, each stage is solved directly, use of SAFT-g-Mie EoS,
physical CO2 capture solvents and processes

Gopinath et al.241 and Gopinath179 Infeasible areas are removed in the course of CAMPD using equilibrium-based tests, process
and flow sheet structural decisions are also considered, use of SAFT-g-Mie EoS, physical
CO2 capture solvents and processes

Duvedi and Achenie,217 Churi and Achenie,219 Wang and
Achenie,220 Achenie and Sinha,224 Karunanithi et al.226,227

Reformulation of nonlinear constraints and new continuous variables to restrict nonlinearities
to continuous variables, use of OA/AP or IA global optimization algorithms, decomposition-
based approach consisting of constraint satisfaction steps, few feasible molecules
introduced in process design step, application to refrigeration, separation, extractive
fermentation, blanket wash and crystallization systems

Cheng and Wang244,306,307 MIHDE algorithm, fuzzy programming, combination of MISQP, direct problem solution,
applied to extractive fermentation systems

Martin and Martinez308 Blend problem, direct formulation, product performance evaluated through empirical model,
environmental and manufacturing process constraints, direct MINLP using BARON

Fung et al.309 Grand model for chemical product design, inclusion of process, material, quality, pricing, and
economic analysis models to bring products to commercialization, case studies as direct
MINLP

Roughton et al.310 Ionic liquid and distillation process design, direct MILP
Palma-Flores et al.,311 Molina-Thierry and Flores-Tlacuahuac,312

Santos-Rodriguez et al.,313 Thierry et al.319
Working fluid and ORC process design, decomposed or direct (simultaneous) CAMPD, NLP,
or MINLP formulations, single fluid or blend design, design under uncertainty

White et al.314 Single ORC working fluids and processes, SAFT-g-Mie, direct solution of MINLP with
OA/ER/AP

Cignitti et al.315,317 General framework for decomposition-based product-process design, applying optimization
to working fluid and ORC design, supports gradual addition of modeling and decision-
making details, other applications include refrigeration and liquid–liquid extraction systems

Stijepovic et al.318 Generic framework for the simultaneous selection of ORC working fluids and design of
complex ORC flow sheets to draw heat from different heat sources, potential to select
different working fluids in heat-sharing ORC cascades, MINLP formulation solved directly
with BARON
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Roughton et al.310 propose the design of ionic liquids as solvents to break azeotropes in distillation. Ionic liquids are first
designed using pure component and mixture properties as design criteria. The best options are then tested in the extractive
distillation column design using a driving force method with a specifically proposed feed stage scaling to minimize energy inputs.
Along with the distillation column, an ionic liquid recovery stage is designed, and simulations are used to determine the overall heat
duty for the entire process for the best ionic liquid candidates.

Palma-Flores et al.311 propose a two-stage approach for the design of working fluids for Organic Rankine cycles (ORC). CAMD is
addressed in the first stage as MINLP formulation using SOO, whereas selected highly performing molecules are subsequently
introduced into an ORC process model to evaluate their performance in terms of thermal efficiency. Molina-Thierry and Flores-
Tlacuahuac312 propose the simultaneous blend and ORC process design in an NLP formulation testing several different objective
functions in independent SOO problems. A detailed overview regarding the two last papers can be found in Linke et al.177 Santos-
Rodriguez et al.313 extend the previous works into the design of working fluids and ORC under uncertainty using deterministic

stochastic programming. White et al.314 implement a direct CAMPD approach in the design of working fluids and ORC processes
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Table 9t0050 Overview of CAMPD approaches using stochastic optimization algorithms, continuous molecular representation or property clustering approaches

References Key features

Approaches using stochastic optimization
Marcoulaki and Kokossis,268,269 Linke and Kokossis320 Simultaneous solvent and separation/reactive separation systems design,

superstructure-based process synthesis, stochastic optimization, direct
solution, SA

Papadopoulos and Linke,161,163,321,322,326 Papadopoulos et al.162,323,324 MOO, superstructure-based process synthesis, data mining, grid computing
separation and reactive separation process synthesis, single and mixed
working fluids and ORC process design, integrated solvent, process and control
design, decomposed approaches, SA

Qadir et al.329 Solvent selection or blend design and process design, PPC-SAFT, prespecified
solvent options, GA with internal loop for continuous parameters,
precombustion carbon capture

Kim and Diwekar,273 Kim et al.,328 Xu and Diwekar,256 Ulas and Diwekar344 Systematic uncertainty quantification methods, MOO, HSTA, GA, batch separation
processes, direct approach, assessment of process controllability in view of
different solvents, decomposed approach

Zhou et al.333 Hybrid methods combining GA and NLP for direct solvent-process design
CAMPD using continuous molecular representation
Bardow et al.,175 Stavrou et al.,334 Lampe et al.,335,336 Schilling et al.338,339 Two- and one-stage CoMT-CAMD, use of PCP-SAFT or GPC-SAFT EoS, NLP or

MINLP (in one-stage formulation) approach, postdesign property uncertainty
analysis for selected molecules, physical CO2 capture solvents and processes,
working fluids and ORC process design, incorporation of detailed heat
exchanger models, and sizing of equipment

Wang and Lakerveld340 PCP-SAFT using the approach of Bardow et al.175 for crystallization solvent
design in view of process operating condition constraints

Roskosch and Atakan176,341 Approach similar to Bardow et al.175 with cubic EoS where molecule is
represented continuously through parameters such as critical temperature,
pressure, and acentric factor, application to heat pump and ORC fluids and
processes

Pereira et al.,152 Mac Dowell et al.,343 Mac Dowell345 SAFT-VR for mixture or blend design considering process operating optimization,
direct approach, equilibrium and rate-based column models,346 physical and
chemical CO2 capture

Frutiger342 Continuous molecular representation for CAMPD using cubic EoS and mapping of
fluids considering uncertainty, details in “Molecular Design Under Uncertainty”
section

Property clustering approaches and reverse problem formulations
Eden et al.,292 Kazantzi et al.,347 Eljack et al.,348 Chemmangattuvalappil
et al.,296 Bommareddy et al.,349,350 Chemmangattuvalappil and Eden,297

Eljack,351 Kheireddine et al.352

Property clusters for process and molecular design, synthesis of molecules using
property clustering, advanced molecular representations, signature molecular
descriptors and higher-order property prediction models, visual and algebraic
CAMPD solution approaches

Ng et al.353,354 Design of biochemicals and mixtures using signature molecular descriptors and
property operators, design problem posed as MILP, design of biorefinery to
produce these biochemicals using superstructure representation. Mixture
design approach derives additive components using property operators, which
are mixed in a fuzzy MOO formulation
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using the GC SAFT-g-Mie EoS. They consider linear, saturated, and unsaturated aliphatic hydrocarbon families and solve the MINLP
problem using OA/ER/AP.

Cignitti et al.315 propose the simultaneous design of single working fluids and a standard ORC process. They investigate one
simultaneous design case in an MINLP formulation using a global solver. A decomposed case is also investigated using BARON
(global optimizer) to handle discrete variables (i.e., molecular structure) in the MILP CAMD and CONOPT316 to address the process
NLP that corresponds to each fluid. This work applies the general framework for simultaneous product and process design proposed
by Cignitti et al.,317 where a hierarchical procedure is developed and implemented for the gradual addition of modeling and
decision-making details in the overall problem.

Stijepovic et al.318 propose the simultaneous selection of working fluid mixtures and the design of ORC process flow sheets. The
design problem is approached in an MINLP formulation where an inclusive and flexible ORC model is automatically evolved by
BARON. The basic building block of the model is the ORC cascade which consists of a heat extraction, a power generation, a
condensation, and a liquid pressurization section. The aim of the optimization is to determine the optimum number of ORC

cascades, the structure of the heat exchanger network shared among different cascades, the operating conditions, and the working
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fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. A unique feature is that
different working fluids may be used in ORC cascades. The working fluids are selected from a prespecified set of options. In the area
of working fluid and flow sheet design, Thierry et al.319 extend their blend design work by considering two different ORC flow
sheets; the two-stage series ORCwhere a heat source is shared between the vaporizers and the two-stage cascade where the condenser
of the first ORC acts as the vaporizer for the second. They formulate an MINLP problem where complex constraints are represented

using GDP.
Stochastic Optimization Approaches

The use of stochastic optimization approaches in CAMPD generally enables the synthesis of wide flow sheets in integrated
molecular and superstructure-based design approaches. An early pilot effort searched molecular design options and process
configurations simultaneaously.320 While the model complexity and combinatorial nature of the integrated model proved
computationally challenging, the results indicated the importance of developing integrated CAMPD solutions rather than employ
CAMD and process synthesis sequentially. A computationally much more efficient approach to CAMPD was later proposed by
Papadopoulos and Linke,161,163 in which the CAMPD problem is decomposed into a CAMD and a process synthesis problem, the
latter screening only those potentially optimal candidate molecules alongside the process design and operational variables. Since
multiple molecular properties impact process performance and the desired directions for those properties are generally understood
from a process design perspective, that is, whether minimization or maximization of a property value would lead to enhanced
process performance, they propose a decomposed CAMPD approach employing MOO at the CAMD stage in order to identify a set
of Pareto-optimum molecules considering multiple properties relevant to process performance as objectives. The identified set of
Pareto-optimal molecules can then be considered into a process design optimization stage (overview of main steps in Fig. 5). The
multiple objectives considered at the CAMD stage may include pure component properties calculated directly by GC models,
mixture equilibrium properties calculated using EoS, and/or activity coefficient models and process models of lower fidelity. The
design information included in the obtained Pareto-optimal set is then systematically exploited in a process design stage which may
employ models of higher fidelity or models which are able to capture a very wide range of potential design options (e.g.,
superstructure-based synthesis models). The introduction of the optimal set of molecules into the process design stage capitalizes
on the available design information through the formation of molecular clusters,321 thus partitioning the molecular set into smaller
compact groups of similar molecules. A representative molecule from each cluster is introduced into the process design stage as a
discrete option. As a result, only a limited number of molecules are selected from the Pareto front and introduced into process
design until a cluster is identified which contains very few molecules of higher process performance than all the other available
options. SA is used as the optimization algorithm, but the approach could readily be implemented with other stochastic search
schemes such as TS or ACO.

The approach of Papadopoulos and Linke161,321 is extended to CAMPD design of reactive separation solvents and flow sheets
(extractive fermentation)163,322 and to solvent and flow sheet design of separation systems where multiple different solvents,
separation tasks, and technologies are decision options.322 The approach is further applied in the design of pure andmixed working
fluids and ORC processes323,324 as well as in the design of chemisorption CO2 capture solvents and absorption/desorption
systems.325 A parallel implementation is also developed by Papadopoulos and Linke326 for high-performance computing
environments,327 including automations and services required for unattended submission and execution of complex workflows.
Papadopoulos et al.162 extend the framework to account for solvent-process design in view of variability in process operation and to
propose optimum control strategies on top of optimum solvents and process characteristics (see also “Molecular, Process and
Control Design” section). The work of Papadopoulos and Linke161,321 adopts the molecular representation of Marcoulaki and
Kokossis268,269 which enables optimal CAMD by SA. It proposes a generalized decomposition-based CAMPD approach motivated
by the work of Linke and Kokossis.320 Other works have attempted parts of the above CAMPD problem. These are summarized later.
It should be noted that structural process optimization (process synthesis) is rarely attempted as part of CAMPD approaches.

Kim and Diwekar273 propose a CAMPD framework consisting of several different stages, shown in Fig. 6. The overall CAMPD
problem is formulated as multiobjective programming within an outer loop employing the Hammersley stochastic annealing
(HSTA) algorithm.167 The outer loop handles discrete optimization parameters (e.g., molecular groups), while an inner loop
handles continuous optimization parameters (e.g., process operating parameters) through an NLP solver. Uncertainty is also
considered through the Hammersley sequence sampling (HSS) method and propagated into a process simulator which simulates
the given values for the discrete, continuous, and uncertain parameters of the optimization problem. It is implemented on the
simultaneous integration of environmentally benign solvent (EBS) selection and in-process solvent recycling. The CAMPD
approach is further extended to account for process synthesis, considering different batch distillation column configurations
together with solvent design.328 The approach is further adapted to a GA by Xu and Diwekar.256

Qadir et al.329 use PPC-SAFT330 for simultaneous solvent selection or blend design and process design. An outer loop employs
MATLAB®331 to select solvent properties and process conditions which are introduced into an inner loop employing ASPEN
Plus®332 where the solvent flowrate is optimized. The solvents are selected from a prespecified list of few options. The outer loop
employs GA whereas the inner loop optimization is performed using SQP.

Zhou et al.333 propose a hybrid optimization approach for CAMPD that combines GA with a deterministic solver. The GA
optimizes the discrete molecular variables and a gradient-based deterministic algorithm solves the continuous NLP of the process at
fixed molecular variables as proposed by the GA. The method is implemented to the design of solvents for separation of acetone
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Fig. 5f0030 Main steps of the decomposition-based CAMPD approach proposed by Papadopoulos and Linke.161,321 Reproduced from Papadopoulos, A.I.; Linke, P.;
Seferlis, P., Integrated Multiobjective Molecular and Process Design: Operational and Computational Frontiers. In Tools for Chemical Product Design: From Consumer
Products to Biomedicine. Computer Aided Chemical Engineering. Martin, M., Eden, M. and Chemmangattuvalappil, N. Eds.; Elsevier: Amsterdam, 2016a, Vol. 39,
Chapter 11, pp. 269–313 by permission of Elsevier.

Fig. 6f0035 The CAPMD approach proposed by Kim and Diwekar.273 Reproduced from Kim K.J.; Diwekar U.M., Ind. Eng. Chem. Res. 2002c, 41(18), 4479 by
permission of ACS.

CMSE: 14342
34 Computer-Aided Molecular Design: Fundamentals, Methods, and Applications

To protect the rights of 
allowed to publish this p

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in
colour in all electronic versions of this book.
Continuous Molecular Representations

A continuous molecular representation approach was proposed in the first-recorded efforts to address CAMD through optimiza-
tion.173,174. However, it was hindered by the inherently discrete nature of UNIFAC groups. The inherent utilization in SAFT-based
EoS of molecular characteristics such as molecular segments, diameters, etc. greatly facilitated the use of continuous molecular
representations in CAMPD. Bardow et al.175 propose the CoMT-CAMD formulation where the problem is decomposed in two
stages, namely the continuous targeting stage and the molecular mapping stage (Fig. 7). The continuous targeting stage is realized
through an appropriate molecular model; it is the perturbed chain statistical associating fluid theory (PC-SAFT) EoS105 which
considers molecules as chains of spherical segments that interact. In this case, the molecular parameters are geometric (size and

elongation), energy-related (dispersive attraction, association energy, and association volume) and polar (point dipole and
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quadrupole moment). Continuous process parameters are also used as decision options. The resulting molecule is hypothetical in
the sense that it does not necessarily coincide with a real fluid or satisfy chemical constraints (e.g., zero free bonds). The authors
address this issue by postulating a mapping stage where the parameters of the optimummolecule are compared with the parameters
of real molecules contained in a database. The proximity of the optimum and real molecules is evaluated based on the average
absolute distance in parameter space, using a Taylor series approximation. A major advantage of the method is the avoidance of
challenging MINLP, on top of the simultaneous solution of CAMPD. The approach is implemented in CO2 capture using physical
absorption, and extended by Stavrou et al.334 to enable more efficient mapping. Lampe et al.335 further apply the idea in the design
of working fluids and ORC systems. The method is further extended by Lampe et al.336 where the mapping stage is implemented
using CAMD, employing the GC GPC-SAFT EoS.337 Schilling et al.339 extend the work of Lampe et al.336 by incorporating the
continuous targeting and the GC-CAMD mapping stages into one stage, calling the overall approach one-stage CoMT-CAMD.
Initially, all integer variables are relaxed to calculate a hypothetical optimum by solving the resulting NLP (CoMT-CAMD). Based on
an OA approach, a mixed-integer programming (MIP) master problem is then solved to identify an integer point with similar
properties as the hypothetical optimum. The MIP master problem defines a tighter upper bound on the objective function.
Afterward, the integer variables are fixed, and the resulting NLP is solved. The solution represents a lower bound on the objective
function. Convergence of the MINLP is achieved based on OA algorithmic principles. Schilling et al.339 apply this approach in the
design of working fluids and ORC using detailed process models. Particularly, heat exchangers considering different heat transfer
types are modeled and sized. Transport properties needed for this purpose are modeled and predicted through PCP-SAFT.

Wang and Lakerveld340 use a two-stage approach, similarly to Bardow et al.175 for crystallization solvent design using process
operating condition constraints. Roskosch and Atakan176 perform a reverse engineering design of the working fluid and a heat
pump process using a cubic EoS. Fluids are represented continuously in the optimization problem through critical temperature and
pressure, acentric factor, and liquid heat capacity. The problem is solved using an NLP solver. The resulting optimum solution is
then identified based on its proximity to fluids available in a database. This approach is also used by Roskosch and Atakan341 for
ORC CAMPD. Frutiger342 also employs a similar approach in terms of using a cubic EoS followed by a molecular mapping stage.
The CAMPD problem is solved using a systematic sampling approach (further details are reported in “Molecular Design Under
Uncertainty” section).

Pereira et al.152 use SAFT-VR102 for the design of a solvent mixture for CO2 capture using physical absorption. The solvent design
space includes linear alkanes. The problem is reduced to the continuous domain by optimizing over the average number of carbon
atoms in the blend. Gopinath179 provides an extensive discussion regarding merits and shortcomings of the approach. Mac Dowell
et al.343 propose the design of a solvent blend for CO2 capture together with process characteristics in a chemical absorption process.
A rate-based absorber model is used, considering inlet temperature, solvent concentrations, and lean solvent flowrate as design

variables.

Revises2 Chapter No.: 14342 Title Name: CMSE
Page Number: 35

Fig. 7 The CoMT-CAMD approach for integrated molecular and process design.175 This is an open access article published under an ACS AuthorChoice License,
which permits copying and redistribution of the article or any adaptations for noncommercial purposes. Reproduced from Bardow, A.; Steur, K.; Gross, J., Ind. Eng.
Chem. Res. 2010, 49(6), 2834–2840.

f the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not
 proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



s0270

p1620

p1625

p1630

s0275

s0280

p1635

Comp. by: G.Rajesh Stage: Re
Date:13/8/18 Time:15:58:24

f0045

CMSE: 14342
36 Computer-Aided Molecular Design: Fundamentals, Methods, and Applications

To protect the rights of 
allowed to publish this p

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in
colour in all electronic versions of this book.
Property Clustering and/or Reverse Formulations

Eden et al.292 proposed a two-stage approach, whereby constitutive variables (e.g., mass transfer rates, equilibrium constants, and
reaction rates) are decoupled from process models (approach depicted in Fig. 8). The first stage uses the constitutive variables as
design variables in a reverse problem formulation where their values are determined based on a desired performance target. In the
second stage, the values of the constitutive variables are given in order to determine the optimum molecular and process
characteristics. The property clustering approach is used to determine the constitutive variables which affect process operation
and can easily be used as targets in a CAMPD problem. In this work, the molecules are designed using a generate and test approach.

Kazantzi et al.347 extend the work of Eden et al.292 by proposing the mapping of molecular structures in the form of functional
groups on property cluster diagrams. They use GC models to calculate properties of new structures that result from small
modifications of existing ones mapped on the diagrams. Eljack et al.348 and Eljack and Eden293 generalize this approach by
proposing rules which can be used for the synthesis of molecules by mixing molecular fragments on property clustering diagrams.
Chemmangattuvalappil et al.295,296 and Chemmangattuvalappil and Eden297 propose new approaches to represent molecular
structures and to calculate their properties, which are all considered in the context of the CAMPD approach originally developed by
Eden et al.292. Details are provided in “Property Clustering Approaches” section. Bommareddy et al.349,350 use the developments
proposed by Chemmangattuvalappil et al.296 to address the simultaneous process and molecular design problem using higher-
order groups within an algebraic context. Kheireddine et al.352 further use a property clustering approach to identify effective
solvents or blends for a process that recycles lubricating oils.

In a slightly different line of work, Ng et al.353 use the signature-based molecular design technique of Chemmangattuvalappil
et al.296 and the property operator concept of Shelley and El-Halwagi290 to design optimal biochemicals, which are then used as
targets to synthesize optimum biomass conversion pathways in an integrated biorefinery. The latter is approached through a
superstructure which accounts for different pathways, intermediates, and production technologies. The molecular design problem is
formulated as MILP. The method is then extended by Ng et al.354 to CAMbPD for biorefineries. The approach includes an original

mixture design contribution which is discussed in “Mixture and Blend Design” section.
Methodologies for Various Problem Classes

Multiobjective Optimization

The main MOO methods used in molecular design include the weighting161,355 and the constraint method.356–358 The weighting
method assigns weights to each objective function, whereas all weight and objective function terms are then aggregated into a sum
that is optimized. The constraint method solves repeatedly a number of SOO problems. One objective is optimized each time, while
the rest are turned into inequality constraints. Several different values need to be tested for the right-hand side of the inequality
constraints in each optimization problem.357 Both methods have advantages and disadvantages. In the weighting method, the

weights need to be varied otherwise the optimization will identify only specific sections of the overall Pareto front. If different
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Fig. 8 The CAMPD approach of Eden et al.292 Reproduced from Eden M.R.; Jorgensen S.B.; Gani R.; El-Halwagi M.M., Chem. Eng. Process. 2004, 43, 595 by
permission of Elsevier.
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weights are used in independent optimizations, then the computational effort will increase. This may be avoided by employing a
variable weight sampling approach during optimization.161 The constraint method is computationally more expensive, but it can
offer a more controlled probing of the Pareto front. A more detailed discussion is provided in Fu and Diwekar.357 Different
formulations have also been proposed employing fuzzy representations,359 as discussed here. All developments are summarized in
Table 10.

Kim and Diwekar273 employ in MOO CAMuPD the constraint method, using the MINSOOP algorithm which minimizes the
number of SOO problems.357 The minimization is achieved by efficient sampling of the number of SOO problems that need to be
solved using the Hammersley sampling sequence. The approach is used in the context of a hybrid algorithm which combines HSTA
with internal NLP.

Papadopoulos and Linke161 propose the use of a variable weighting method within a SA algorithm. The weights are randomly
drawn from a uniform distribution and vary within the optimization in order to provide an efficient sampling of the potential
objective function combinations and to identify a good approximation of the Pareto front. The algorithm keeps track of the Pareto
front through a dynamically updated archive. A set of archival rules, implementing Pareto principles, updates the archive as
appropriate. The approach is further used as part of the CAMbuPD and CAMPCD frameworks of Papadopoulos et al.324 and
Papadopoulos et al.162

Xu and Diwekar256 propose the multiobjective efficient GA (MOEGA) for CAMuPD using the weighting method. The authors
employ random weights during optimization, as in Papadopoulos and Linke,161 but implement the Hamersley sampling sequence
to support the random sampling of the weights.

Limleamthong et al.360 propose the MOO selection of chemicals using the data envelopment analysis (DEA) approach.
A parameter called relative efficiency score is used to evaluate the relative changes caused to all molecular performance indices by
assigning different weight values. As a result, weights are not fixed in DEA and the resulting relative efficiency scores indicate the
efficient (Pareto-optimum) molecules. This is approached by solving a linear programming model (the primal problem) which
maximizes the scores. An additional feature of DEA is the subsequent solution of the dual linear programming problem. The latter
provides targets for improvements necessary so that suboptimal solutions may enter the Pareto front.

Ng et al.359 propose MOO CAMD using a fuzzy representation. A variable called “degree of satisfaction” is defined which takes
values in the range [0, 1] based on satisfaction of upper and lower limits for each objective function. The degree of satisfaction is
calculated as a function of these limits for each objective function. When a property to be minimized approaches its lower limit, the
degree of satisfaction approaches 0 and vice versa. The degree of satisfaction therefore takes a value which indicates the distance
from the upper and lower limits for each objective function. Since it also takes values within [0, 1], the optimization problem is
formulated as a maximization or minimization of the degree of satisfaction subject to constraints which account for the way that it
varies for each objective function. This is called a Max–Min aggregation approach and drives the optimization to identify solutions
based on the weakest or worse objective, for the case of a maximization problem. This means that the other objectives may be overly
relaxed, and/or it is likely to obtain two designs that have the same degree of satisfaction for one of the objectives, that is, that have
the same distance from the limits of the corresponding objective. To address this limitation, a second optimization step is
introduced, called the two-phase approach, where the objective is to optimize for the sum of the degrees of satisfaction over all
objectives, subject to an additional constraint on the degree of satisfaction of the least satisfied objective identified in the Min–Max

phase. While these are the two main steps of the multiobjective problem formulation, a prior step involves the solution of an
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Table 10 Key features of molecular design approaches employing MOO

References Problem class and method
Optimization
approach

Kim and Diwekar273 CAMuPD, constraint method Hybrid of HSTA and
NLP

Papadopoulos and Linke,161

Papadopoulos et al.162,324
CAMD, weighting method, also used in CAMbuD and CAMPCD frameworks SA

Xu and Diwekar256 CAMuPD, weighting method GA (MOEGA)
Limleamthong et al.360 Selection of molecules using DEA, variable weights, identification

of Pareto front and of improvement targets for suboptimal molecules
Linear programming

Ng et al.354,359 CAMD, fuzzy representation method MILP
Khor et al.361 CAMuD, fuzzy representation method Disjunctive

programming
Ooi et al.362,363 CAMD, weighting method, AHP, fuzzy representation of weights MILP, NLP
Ten et al.364,366 CAMD, fuzzy representation, AHP for assignment of weights in postanalysis

of designed molecules
MILP, disjunctive
programming

Burger et al.237 CAMPD, weighting method MINLP, sandwiching
algorithm

Dev et al.,368 Dev369 CAMRD, constraint method, AUGMECON and AUGMECON2 MINLP
Schilling et al.338 1-stage CoMT-CAMPD, constraint method MINLP
Valencia-Marquez et al.376 CAMPD, constraint method MINLP
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optimization problem to identify upper and lower limits for objective functions with unknown limits. This is necessary in order to
define the degree of satisfaction. The entire algorithm is therefore a bi-level optimization problem including the identification of
upper and lower limits, if necessary, prior to solving the Max–Min problem. The approach is illustrated in MILP CAMD
formulations. The approach is extended by Ng et al.354 to the design of mixtures, discussed in “Mixture and Blend Design” section.
Khor et al.361 further use this approach for CAMuD of alternative solvent to extract oil from palm pressed fiber. The problem
includes the use of disjunctions in the optimization formulation to address the use of discontinuous penalty functions in health and
safety indices used in solvent design.

Ooi et al.362 propose the analytic hierarchy process (AHP) to identify the weight values required in the weighting method while
smoothing the subjective judgment of the decision-maker. The AHP involves the development of a pairwise comparison matrix
which includes the values describing the relative importance among objectives. The authors propose to use a 9-point scale system to
assign such values. A sensitivity analysis stage is included which allows perturbation of the initially assigned values within a
predefined range. The weighting factor of each property is then obtained by calculating the principal eigenvector of the pairwise
comparison matrix. A consistency verification ratio is proposed which comprises the consistency ratio over the consistency index of
a random pairwise comparison matrix. The consistency verification ratio measures the distance of the principal eigenvalue from the
order of the matrix. This means that for higher distance, the inconsistency is higher in the judgment of the decision-maker regarding
the relative importance of the objective functions.

Ooi et al.363 propose a fuzzified approach within the AHP. Instead of using the 9-point scale system to assign importance values
in the pairwise comparison matrix, the authors use triangular fuzzy numbers where the lower and upper values may be calculated by
assigning a value in parameters called “degree of confidence of the decision maker.” The optimal priority vectors (i.e., the weights of
the MOO aggregate function) that approximate the solution ratio in the pairwise comparison matrix are then calculated through an
NLP problem formulation which simultaneously determines the consistency index. The latter indicates the degree of satisfaction of
all computed weight ratios that would satisfy the initial fuzzy judgments. The problem is formulated as disjunctive programming.

Ten et al.364 propose a MOO product design framework which considers safety and health aspects. The MOO CAMD
formulation employs a fuzzy representation which is based on the same principles proposed by Ng et al.359 The designed molecules
undergo a postanalysis which is based on evaluation of health and safety indices. Scores are assigned in several individual indices,
and the final ranking is based on a weighted sum of all indices. The AHP approach proposed by Aminbakhsh et al.365 is used to
determine the weights. Ten et al.366 extend the approach by introducing disjunctive programming to assist the allocation of index
scores to the molecules depending on their property values.

Burger et al.237 propose a MOO CAMPD approach within an MINLP formulation. The authors use the weighting method in a
deterministic sandwiching algorithm proposed by Bortz et al.,367 which is modified and used as a heuristic to achieve a compromise
between performance and sampling quality. The authors describe a step-by-step procedure pertaining to the identification of Pareto
points, noting that only the convex hull of the Pareto-optimal set is determined. Furthermore, they note that mixed-integer
(combinatorial) MOO is a rather new field of research using heuristic treatment to approximate the Pareto front, while for
nonconvex MOO problems involving only continuous variables there are efficient deterministic optimization approaches.

Dev et al.368 and Dev369 employ the AUGMECON370 and AUGMECON2371 algorithms which are based on the augmented
e-constraint method. AUGMECON guarantees generation of Pareto-optimal solutions. In case of MOO MINLP problems, the
guaranteed Pareto-optimal solutions may be locally optimal. But, this is better than the possibility of generating local weak Pareto-
optimal using the conventional e-constraint method. The authors employ the DICOPT372,373 solver in GAMS374 to solve the MINLP
problems which are part of AUGMECON-based schemes.

Schilling et al.338 implement MOO CAMPD in their one-stage CoMT approach. They use the normal constraint method375 with
a local MINLP solver. Non-Pareto-optimal solutions are also identified, hence the normal constraint method is repeated where the
direction of movement of the normal constraint is changed. Both resulting Pareto fronts are superimposed and filtered according to
Pareto dominance criteria to increase the accuracy of the solution. Valencia-Marquez et al.376 also propose a CAMPD approach for

the design of CO2 capture ionic liquids where MOO is employed using the e-constraint in a deterministic MINLP formulation.
Mixture and Blend Design

The key features of all mixture and blend design approaches are illustrated in Tables 11–13. The contributions are separated based
on the applications. Table 11 includes mixture and blend design approaches applied in solvent design, Table 12 includes
applications in heat exchange fluids, and Table 13 includes applications in polymers, fuel and lubricant additives, and formulated
products.

Klein et al.212 propose a blend design approach to identify the optimum number of solvents in the blend and the corresponding
concentration. The solvents forming the blends are selected from a set of prespecified options. The problem is solved using the SLRP
approach.213 The method is further used by Gani and Fredenslund214 in a four-stage approach where the resulting mixtures are
determined again from a set of prespecified solvent options.

Buxton et al.203 propose a CAMbPD methodology which includes the design of binary mixtures where the structure of both
components is determined through optimization, together with the mixture concentration. Mixtures are considered in process
design only if they satisfy specific thermodynamic performance tests, hence the problem is decomposed. The aim is to identify

solvent mixtures and absorption process operating conditions that enable environmental impact minimization.
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Table 11t0060 Main features used in solvent mixture or blend design approaches

References Problem class and approach summary Optimization approach

Klein et al.,212 Gani and
Fredenslund214

Blend design to determine optimum number of components in blend and the
corresponding concentrations, blends generated as combinations from a prespecified
set of solvents

SLRP optimization algorithm, direct
optimization

Buxton et al.203 CAMbPD, binary mixture, component structures and mixture concentration identified
through optimization together with process features, decomposition approach

MINLP addressed with GBD algorithm

Achenie and Sinha224 Blend design, selection from prespecified list and identification of optimum composition,
process constraints

MINLP, global optimization with IA

Siougkrou et al.377 Simultaneous identification of blend concentration and cosolvent (selected from a
prespecified set) with process characteristics

MINLP formulation, complete enumeration

Zarogiannis et al.,165

Papadopoulos
et al.164

Identification of binary blend composition and concentration, selection of solvents from a
prespecified set, consideration of uncertainty in property predictions, decomposition
approach

MOO formulation, complete enumeration

Jonuzaj et al.,238

Jonuzaj and
Adjiman240

Blend design problem to identify optimum number of components and concentrations
from a prespecified set of solvents

GDP with BM or HR approach, direct
optimization

Kheireddine et al.352 Identification of feasible solvents from prespecified options and concentration in a two-
stage approach, pure components are evaluated first and are then combined to form
mixtures, feasible region determined from process requirements

Property clustering

Van Dyk and
Nieuwoudt254

CAMbPD formulation for identification of optimum structure of mixture components and
concentrations, the number of components in mixtures can also be identified through
a sequential increase (i.e., not a degree of freedom in optimization), decomposition
approach

GA

Karunanithi et al.,226

Sinha et al.225
CAMbPD, partial mixture design, one component is fully specified, the structure of the
other component is designed together with mixture composition, decomposition
approach

MINLP, global optimization with IA

Karunanithi et al.227 CAMbPD, the structure of both components needs to be determined in a binary mixture
together with mixture composition, decomposition approach

MINLP

Heintz et al.153 CAMbD, partial mixture design, one component is fully specified, the structure of the
other component is designed together with mixture composition

GA, direct optimization

Chong et al.378 CAMbD, identification of optimum ionic liquid structures and concentration in a two-
stage approach, pure components are generated first and are then combined to form
mixtures

Property clustering approach

Austin et al.149 CAMbD approach to identify optimum structure of mixture components and
concentrations, the problem formulation can consider an upper number of
components, it is applied to identify the structure and concentration of one cosolvent
in different formulations, direct optimization.

Hybrid DFO with BARON for continuous
nonconvex problem, direct optimization.

Austin et al.149 QM-CAMbRD approach to identify optimum structure of mixture components and
concentrations, applied to the design of binary mixtures.

Optimization approach similar to Austin
et al.182, direct optimization.

Jonuzaj et al.239 CAMbD complete mixture design formulation to identify optimum number of
components, their structures, and concentrations.

GDP formulation, direct optimization.
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Karunanithi et al.226 propose a CAMbD approach comprising several stages to gradually evaluate constraints such as chemical
feasibility, pure component properties, mixture properties, and so forth. Molecules that satisfy the constraints in each stage are
selected to proceed in the subsequent screening stage, resulting in a gradual reduction of the available molecular set. The presented
applications consider a binary solvent blend where water is prespecified as the first solvent. The approach is used to design the
cosolvent, while an optimization search is performed to determine the optimum concentration of the binary mixture. Karunanithi
et al.227 extend this approach to the design of a binary mixture, where both the solvent and the antisolvent need to be designed for a
crystallization process. A similar approach is also proposed by Sinha et al.225, however a more efficient algorithm, namely IA
optimization, is used to address the nonconvexities of the thermodynamic prediction models.

Jonuzaj et al.238 and Jonuzaj and Adjiman240 propose a blend design approach to identify the optimum number of components
in the blend and the corresponding concentrations. The components in the blend are selected from a list of prespecified options.
Jonuzaj et al.239 address the complete CAMbD problem where the number of components, their structures, and concentrations
result from the optimization (see also see “Deterministic optimization approaches in molecular design” section).

While all the earlier-mentioned works utilize deterministic optimization methods, a GA is employed by Van Dyk and
Nieuwoudt254 to address the design of multicomponent mixtures through a decomposed approach. The method starts by
implementing CAMD for the design of single solvents and selecting the 10 best options. Each of these solvents is then enhanced

with 1000 more solvents selected randomly to form a population of 10.000 binary mixtures. For each mixture, the first solvent is
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Table 12t0065 Main features used in heat exchange fluid blend or mixture design approaches

References Problem class and approach summary Optimization approach

Duvedi and
Achenie,218

Churi and
Achenie219

Binary blend design to determine composition and concentration
from prespecified set of options, process operating constraints

MINLP, OA/AP, direct optimization

Lee et al.380 Blend design of concentration and process considering a four-
component mixture, decomposition approach

Analysis of composite curve intervals, solution of NLP

Mavrou et al.382,383 Blend design of mixture concentrations and process features
considering prespecified options from CAMbPD and literature,
consideration of nominal and off-design operation of ORC,
decomposition approach

MOO, nonlinear sensitivity analysis, complete enumeration

Molina-Thierry and
Flores-
Tlacuahuac312

Blend design of number of mixture components, mixture composition
and concentration with process operation, prespecified set of pure
fluids to form mixture combinations, application to working fluid
and ORC process design

NLP formulation, CONOPT in GAMS, direct optimization

Thierry et al.319 Blend design of number of mixture components, mixture composition
and concentration with process structure and operation,
application in ORC

NLP for single and series ORC model with CONOPT, disjunctive
programming for ORC cascade, extended mathematical
programming (EMP)384 using the BM reformulation and then
solved via the SBB385 solver, direct optimization

Santos-Rodriguez
et al.313

Blend design of number of mixture components, mixture composition
and concentration with process operation, prespecified set of pure
fluids to form mixture combinations, application to working fluid
and ORC process design under uncertainty

NLP formulation, CONOPT in GAMS, direct optimization

Solvason et al.381 CAMbD using property clustering techniques, generation of all
possible combinations of groups in cluster space, gradual increase
in number of mixtures with specification of structure of mixture
components and concentration

Property clustering, complete enumeration

Papadopoulos
et al.324

CAMbPD, two-stage approach, screening phase to identify first
mixture component, design phase to identify matching second
component and concentration, ORC working fluids and processes,
decomposition approach

MOO SA

Cignitti et al.317 CAMbPD for simultaneous binary mixture and refrigeration process
design, decomposition approach

MINLP formulation, SBB solver in GAMS
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kept fixed, while the second solvent is allowed to evolve through optimization to identify and finally select the 100 best overall
binary mixtures. The method is repeated by assigning 100 randomly selected solvents to each binary mixture, hence forming 10.000
tertiary mixtures, while a fourth component is also subsequently considered in the same manner. After completion of quaternary
mixtures, all solvents within each mixture are allowed to evolve freely. The method is applied in the design of binary solvent
mixtures for extractive distillation processes.

Austin et al.149 propose a CAMbD approach for the design of mixtures with the aim to identify the optimum structure of each
component and mixture concentration, while the approach could also consider an upper number of components in the mixture.
The method combines numerous different tools, including DFO, the AMODEO framework,158 and BARON to handle the
nonconvex mixture concentration. The approach starts with the generation of trial points by the DFO to identify upper and
lower property bounds AMODEO is used to design structures within these bounds, at a minimum distance from the trial points, and
the mixture concentration is optimized for these structures. Higher-order GC models are used for improved property prediction of
structures. The approach is extended in QM-CAMbRD149 where the properties are calculated through COSMO-RS and COSMO-SAC.

Siougkrou et al.377 report an approach for the selection of a cosolvent from a list of prespecified options in a blend and for the
identification of the optimum concentration and process conditions.

Zarogiannis et al.165 and Papadopoulos et al.164 propose a systematic approach for the identification of optimum solvent
mixtures in postcombustion CO2 capture. The Pareto front of pure solvents resulting from MOO CAMD is used to exhaustively
generate all possible composition and concentration combinations in terms of binary blends. Screening tests are performed
accounting for boiling and melting point constraints, mixture miscibility, and CO2 dissolution in mixtures. Binaries that satisfy
constraints are evaluated using a MOO approach. Uncertainty is accounted for by considering multiple different models for
property prediction in Zarogiannis et al.165

Chong et al.378 propose a visual property clustering approach for the design of mixtures of ionic liquids used as solvents in CO2

capture. The method includes the generation of pure ionic liquid candidates using property clustering based on Chong et al.379 The

pure component options are then used in combinations to generate binary mixtures. Once the potential pairs are generated, the
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Table 13t0070 Main features used in blend or mixture design including polymers, fuel and lubricant additives, and formulated products

References Problem class and approach summary Optimization approach

Polymers
Solvason
et al.386

Blend design for identification of optimum mixture concentration, approach similar
to Solvason et al.381

Property clustering, complete enumeration

Hada et al.300 Blend design of optimum mixture concentration approach similar to Solvason
et al.,381 but with advanced chemometric techniques for structure–property
identification

Property clustering, complete enumeration.

Vaidyanathan
and
El-Halwagi229

CAMbD for determination of structure and concentration in binary mixtures IA global optimization for nonconvex problems with
lower bound tests and distrust-region method, GINO
software as local optimizer, direct approach

Additives in fuels or lubricants
Yunus et al.387 Blend design of optimum number of components and concentrations, multistage

decomposition approach eliminating options
NLP optimization

Hada et al.298 CAMbD, partial mixture design, identification of optimum structure and
concentration of biofuel additive, development of latent property GC model for
CAMD

Property clustering, complete enumeration

Ng et al.354 CAMbPD, one component is designed as additive in a fuel mixture, structure of
component and concentration are optimized, approach similar to Ng et al.359 with
the addition of mixture constraints, decomposition approach

MILP, fuzzy MOO

Formulated products
Martin and
Martinez308

Optimum blend concentration and manufacturing conditions, process
superstructure

MINLP formulation, BARON, direct optimization

Conte
et al.191,192

Multilevel CAMbD approach for solvent binary mixtures, considering suitable active
ingredients, solvent binaries are generated, and upon constraint satisfaction
concentrations are optimized based on desired criteria

Generate and test approach

Mattei
et al.193,388

CAMbD to identify few components that satisfy desired constraints and then
addition in preexisting mixtures to identify their optimum concentration,
multistage product design framework for emulsions, focus on surfactants design,
decomposition

Optimization problem formulation
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mixture properties are formulated into property clusters, boundary points are generated based on constraints, and the procedure
continuous until all feasible mixtures are identified.

In the area of fluids employed in heat exchange applications, the design of environmentally benign refrigerant mixtures is
considered by Duvedi and Achenie218 using a set of prespecified molecules. The mixture candidates are used as integer decision
parameters in an optimization problem formulation that considers binary mixtures of concentration that is additionally regarded as
a continuous decision parameter. The employed objective function combines the compressor displacement in a refrigeration cycle
with the ozone depletion potential of the mixture. A similar approach is used by Churi and Achenie219 on a double-evaporator
refrigeration cycle to obtain mixtures that maximize cooling. Lee et al.380 focus on addressing both the combinatorial complexity in
view of different concentration requirements in multicomponent refrigerant mixtures and the increased computational effort
required due to need of refrigeration models in order to assess the performance of the refrigeration system. This work considers a
mixture of four refrigerants commonly used in the liquid natural gas industry to optimize the mixture concentration. The method
focuses on the use of a combined mathematical/thermodynamic screening approach to evaluate the impact of different decision
parameters (e.g., mixture concentration and flow rate and pressure levels) in the shaft work required in a refrigeration cascade.

Cignitti et al.317 propose an approach for simultaneous mixture and process design. It includes a hierarchical procedure for
addition of modeling and design information. The approach is used to design a binary mixture (molecular structures of compo-
nents and concentration) and a refrigeration process. Solvason et al.381 build on the works of Eden et al.292 and of Eljack et al.348

and formulate a product and molecular design problem. The aim is to generate the structures of all possible molecules and
molecular mixtures that can be built from a specific number of groups. First, product attributes are identified/specified and then a
CAMbD problem is solved to find structures and mixtures that match these targets. The attributes are mapped onto property
clustering diagrams and mixtures are identified within such diagrams. Regression techniques are used to associate product attributes
with molecular structures. The optimum matching of the target properties is performed in two ways: starting from known pure
components, combinations are generated and their properties are calculated in the cluster space. Binary mixtures may evolve to
tertiary or higher mixtures until the targets are matched. Furthermore, new components can be generated from combinations of
groups and new mixtures can be developed with existing components. Hence, the structure of the components, mixture number,
and mixture concentration may be determined.

Papadopoulos et al.324 propose a CAMbPD approach for binary mixtures. It addresses the identification of the optimum

structure and concentration of the two components together with the optimum process conditions. A screening phase considers
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the design of a mixture comprising a structurally feasible and a structurally infeasible component. A set of mixtures results from a
MOO problem formulation. For each one of the structurally feasible components, a design phase aims to identify a structurally
feasible second mixture component together with the optimum mixture concentration and process conditions. The problem is
addressed again in a MOO formulation. The approach enables the identification of the best possible first component in a mixture
for a particular task, prior to identifying its matching second component. The method is applied in ORC working fluid and process
design. A sensitivity analysis is used as a post-CAMbPD stage to quantify the effects of uncertainty in the obtained designs. Mavrou
et al.382 evaluate several mixtures obtained from CAMbPD of Papadopoulos et al.324 together with mixtures from literature to
determine the optimum mixture concentration and ORC operating conditions, in ORC operating with solar heat and heat storage.
The approach considers screening stages based on complete enumeration through MOO. The method is extended by Mavrou
et al.383 to identify blend concentration and process performance at off-design process operating conditions. A nonlinear sensitivity
analysis is used together with MOO, analyzed in “Molecular Design Under Uncertainty” section.

Molina-Thierry and Flores-Tlacuahuac312 optimize the number of working fluids participating in the mixture, the type of
working fluids that form the mixture, and the mixture concentration together with the ORC operating conditions. The working
fluids that are used to generate mixture combinations are selected from a prespecified set of 3, 11 or 6 pure fluids in the performed
case studies. Starting from amaximum number of mixture components, the optimum number of components is identified based on
their concentrations. Thierry et al.319 address the same blend and process design problem with Molina-Thierry and Flores-
Tlacuahuac,312 but the process design considers different ORC structures, including a series flow sheet model and a cascade scheme.
Mixtures with up to five components are considered, hence when one concentration goes to zero after optimization the number of
components is reduced. Each ORC process configuration and blend design problem is solved separately. Santos-Rodriguez et al.313

consider the problem of Molina-Thierry and Flores-Tlacuahuac312 within an uncertainty framework. More details are discussed in
“Molecular Design Under Uncertainty” section.

In the case of polymer mixture design, the development of binary polymer mixtures is addressed by Vaidyanathan and
El-Halwagi229 using the structure of both components and the mixture concentration as decision parameters, while the optimiza-
tion problem is addressed using an MINLP approach with IA global optimization. Solvason et al.386 employ a property clustering
method to determine the optimum number of chemical constituents delivering a desired property. The method is applied on the
identification of optimum polymer blends considering four pure polymer compounds as the mixture components. The method
shares similarities with Solvason et al.381 A similar method applied on the identification of optimum starch blends considering
three components is also proposed by Hada et al.300 A key feature is that property–structure models used to predict properties that
become targets for mixture design are developed using advanced chemometric techniques. Hada et al.298 propose an approach for
the design of biofuel additives using property clustering. Latent variable property models are developed for prediction of properties.
These property models are based on groups for which contributions are derived in the latent variable space from principal
component analysis and principal component regression. These models are used to design molecules in a GC-CAMD approach.
The blend design problem pertains to the identification of the additive structure and its concentration in the mixture.

A decomposition-based approach is proposed for the design of gasoline and lubricant blends by Yunus et al.387 The approach
starts by considering many potential combinations of prespecified pure chemical compounds which are then invoked on
subsequent tests with respect to their performance against important blend properties. After each test, blend candidates are
eliminated, gradually reducing the available set. Finally, the blends satisfying all constraints are evaluated regarding their economic
performance in the application in which they are utilized. The blend design problem consists of identifying the optimum number of
components and their concentration, allowing up to quaternary blends. The method is applied considering bio-derived chemicals
forming mixtures with gasoline components as well as chemicals required in lubricants.

Ng et al.354 propose a multistep approach for CAMbPD where mixtures are identified as products of biorefineries and the
biorefineries are designed to produce them. The mixture steps involve, among others, the structural design of additive components
which are then mixed in the main (prespecified) components. The miscibility of the mixtures is tested. The aim is to identify the
optimum mixture structure and concentration, together with the optimum process structure that produces it, through a superstruc-
ture approach. The problem is addressed using the fuzzy MOO approach of Ng et al.359

Conte et al191,192 propose a solvent mixture design approach for formulated products. Prior to solvent mixture design, active
ingredients are selected, and solvents are then selected based on their suitability for the particular active ingredients. Given the
constraints for the mixture target properties, the algorithm identifies the possible binary combinations of solvent that match the
constraints. Mixtures that satisfy constraints go into the mixture optimization stage where the optimum concentrations are
identified. The identification of solvents is based on a generate and test approach.

Mattei et al.193,388 propose a systematic multistage product design methodology for the design of emulsions. The approach
includes the problem specification for the identification of appropriate active ingredients, solvents, and surfactants. CAMD can be
used in the design of solvent candidates and surfactants. The focus is on the design of surfactants which are added in the mixtures
and the identification of their optimum concentration, subject to pure component and mixture constraints. The CAMD approach is
used to identify surfactant candidates that satisfy desired constraints. The latter are then introduced into mixtures with the
preselected components. Martin and Martinez308 address the problem of identifying optimum blends and manufacturing condi-

tions for development of detergents (see “Deterministic Optimization Approaches” section for details).
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Molecular Design Under Uncertainty

Themain features of molecular design approaches under uncertainty are summarized in Table 14. Maranas168 proposes a systematic
CAMuD approach where probability distributions are used for the quantification of uncertainty in GC parameters and chance
constraints are used in the optimization problem formulation. The overall problem formulation aims to identify the maximum
value of the performance target that can be met by the stochastic performance objective with at least a certain probability value,
while maintaining all the property values (constraints) within their respective lower and upper bounds with probability greater than
or equal to a certain value. The author addresses the problems of stochastic property matching (SPM) under uncertainty and of
stochastic property optimization (SPO) under uncertainty. SPM identifies the molecular compositions for which a scaled property
violation target is minimized, guaranteed to be matched by all properties under a certain probability. SPO identifies the molecular
compositions that maximize a property with a certain probability, while lower and upper bounds are satisfied for the rest of the
properties under a certain probability. The original nonlinear stochastic problem formulations are transformed into deterministic
MINLP with linear binary and convex continuous parts. It is found that property prediction uncertainty affects very significantly the
selected molecule in the SPM formulation, while the effect is small in the SPO formulation. The method is used in Raman and
Maranas10 where the molecular representation is based on topological indices.

Kim and Diwekar167 propose a CAMuD approach where uncertainty is quantified for various molecular and mixture properties
(e.g., solubility parameter and activity coefficients) using probability distributions. The HSTA272 algorithm is then used to design
and identify optimum molecules. HSTA employs a variable probability sampling schedule, starting from fewer samples at the
beginning of the optimization search which are gradually increased as the search is intensified toward promising solutions.
A penalty function is used to account for the sampling error. The aim is to reduce the overall number of samples required from
the underlying probability distributions. The latter is supported efficiently using the HSS approach which exhibits better uniformity
properties than other conventional Monte Carlo techniques. Kim and Diwekar273 further extend this approach to CAMuPD
problems where it is combined with MOO. Xu and Diwekar255,256 further propose representation of uncertainty using probability
distributions, adapted to the HSGA and MOEGA algorithms which are modified GA to account for uncertainty and MOO.

Folic et al.389 develop a CAMuRD approach which considers multiple different scenarios for the potential realizations of the
uncertain parameters. The optimization problem accounts for all scenarios simultaneously by considering an objective function
which minimizes a weighted average of the scenarios. The scenarios result from a global sensitivity analysis that considers the effects
of the uncertainty parameters on the model outcome. The authors vary up to a certain number of uncertain parameters simulta-
neously and the uncertain parameter space is explored using Sobol’s approach.390 Since the problem is linear, the solvents resulting
from the sensitivity analysis are clustered, hence the convex hull is calculated and is then divided into several subareas. The center of
each subarea is used to determine the scenarios. The method is used to assess the uncertainty in parameters fitted for the reaction
rate constant model. The method is further used in the CAMuRPD approach of Folic et al.391

Zhou et al.392 propose a CAMuRD approach where they consider uncertainty in the parameters used to fit the reaction rate
constant model. They first perform a sensitivity analysis to identify the parameters that cause the highest sensitivity in the results of
the CAMD problem. The parameter uncertainty region is determined by confidence intervals. They then solve a multiscenario robust
optimization problem considering uncertainty in the selected parameters. They first derive probability density functions to quantify
uncertainty and they then follow a Monte Carlo sampling procedure to obtain samples. The CAMuRD problem is then solved for
these samples.

Diky et al.393 incorporate in the ThermoData Engine of the National Institute of Standards a method for calculation of
uncertainty in property prediction models. The covariance method is used together with empirical adjustments to address known
shortcomings of this method, such as the assumptions that uncertainty is based on uncorrelated random error in source data and
others. The engine is enhanced with a solvent design algorithm, hence uncertainties may be provided for the properties of the
designed solvents.

Papadopoulos et al.324 propose a nonlinear sensitivity analysis approach for the designs obtained from CAMD in order to assess
the sensitivity of MOO CAMbD mixtures in the uncertainty of properties. The method is based on the development of a sensitivity
matrix which incorporates the derivatives of multiple process performance measures with respect to multiple operating parameters
and molecules. The sensitivity matrix constitutes a measure of the variations propagated through the nonlinear (process) model
under the influence of infinitesimal changes imposed on the selected parameters. It is decomposed into major directions of
variability associated with the eigenvectors corresponding to the larger in magnitude eigenvalues of the sensitivity matrix. The
eigenvector of the largest eigenvalue represents the dominant direction of variability for the system, causing the largest change in the
performance measures. The entries in the dominant eigenvector determine the major direction of variability in the multiparametric
space and indicate the impact of each parameter in this direction. Having identified this direction, it is not necessary to explore all
directions of variability (i.e., combinations of parameters) arbitrarily, hence reducing the dimensionality of the sensitivity analysis
problem. The dominant eigenvector direction is then considered in the exploration of the system behavior as indicated by the
change of key performance indices under simultaneous, multiple, and finite parameter variations.

Papadopoulos et al.394 propose an uncertainty assessment approach in the analysis of results obtained from MOO CAMD by
considering multiple different models for the prediction of the same property used as performance index to further evaluate and
rank-order the Pareto-optimum molecules. The approach considers multiple performance indices which are predicted by different
models. An average of the indices is used to rank-order the Pareto molecules, hence its calculation is based on different model

combinations. As models are changed for each property index, the average takes a different value for every model combination. As a
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Table 14t0075 Main features of molecular design approaches under uncertainty

References Problem class and approach summary Optimization approach

Maranas,168 Raman and
Maranas10

CAMuD, probability distributions for uncertainty in molecular
properties

Chance constraint method, equivalent deterministic MINLP
problem formulation, transformation of MINLP to MILP, direct
optimization

Kim and Diwekar167,273 CAMuD and CAMuPD, probability distributions for molecular and
mixture properties

HSTA, MOO, direct optimization

Xu and Diwekar255,256 CAMuD and CAMuPD, probability distributions for molecular and
mixture properties

HSGA and MOEGA algorithm, MOO, direct optimization

Folic et al.389,391 CAMuRD and CAMuRPD, multiscenario approach, scenarios
determined from global sensitivity analysis, uncertainty in
property model descriptors

MILP and MINLP problem formulations, direct optimization

Zhou et al.392 CAMuRD, multiscenario approach, sensitivity analysis for
parameters of the reaction rate constant, generation of
probability density functions and sample, stochastic molecular
design solved for samples

MINLP formulation, direct optimization

Diky et al.393 Uncertainty estimation for solvent properties based on covariance
method with empirical adjustments

Knowledge-based approach

Papadopoulos et al.324 CAMbPD sensitivity postanalysis that identifies the dominant
directions of variability in uncertain parameters in
multiparametric space, uncertainty in molecular properties

Development and analysis of nonlinear sensitivity matrix in
multiparametric space

Papadopoulos et al.,394

Zarogiannis et al.165
CAMD and mixture selection postanalysis considering multiple
different models for the prediction of the same properties,
rank-order of molecules, uncertainty quantification by
considering distribution of ranks

Consideration and rank-ordering of molecules/mixtures based on
multiple different models for prediction of property
performance indices

Martin and Martinez396 Blend and process design, probability distributions, internal and
external sampling, scenario reduction approach

Direct optimization using BARON

Ng et al.397 CAMuD, uncertainty quantification through standard deviation
from property model regression, incorporation of extended
bounds in a fuzzy representation

MOO fuzzy representation, MILP, direct optimization

Ten et al.398 CAMuD, uncertainty quantification through standard deviation
from property model regression, incorporation of extended
bounds in a fuzzy representation

MOO fuzzy representation, mixed-integer formulation, disjunctive
programming

Frutiger et al.399 Multilevel approach for molecular selection based on process
performance under molecular property uncertainty, Monte
Carlo approach for uncertainty analysis at optimum process
operating point for each molecule

Systematic sampling of process design space for identification of
optimum process operating point for each molecule from a
database

Frutiger342 CAMPD using a continuous molecular representation approach,
mapping of virtual to real fluids considering property
uncertainty, post-CAMPD selection of highly performing real
fluids under uncertainty based on Frutiger et al.399

Continuous molecular property space sampled systematically and
propagated through process model to identify virtual working
fluids and corresponding process performance

Frutiger et al.402 (1) GC-based CAMPD and postanalysis of uncertainty effects on
selected molecules based on Frutiger et al.399

(2) Systematic uncertainty quantification of GC parameters,
generation of multiple scenarios through sampling, solution of
optimization-based CAMuPD for each scenario

(1) Sampling approach for GC-based CAMPD as in Frutiger
et al.399

(2) Optimization-based CAMuPD, MINLP formulation

Santos-Rodriguez
et al.313

Uncertainty in process operating parameters, (1) blend and
process design under uncertainty considering different
scenarios in a stochastic programming formulation, resulting in
one optimum design, (2) blend and process design identifying
one optimum design for each scenario separately

MINLP, direct optimization, CONOPT solver

Andres-Martınez
et al.404

(1) CAMD and postanalysis of uncertainty using Monte Carlo
approach

(2) CAMuD and MINLP with uncertainty in linear constraints

MINLP formulation, direct optimization, see also Palma-Flores
et al.311
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result, the ranking of the molecules changes as different combinations are used to calculate the average. Highly performing
molecules are selected based on their frequency of appearance in the top positions. Uncertainty is quantified as a distribution of
molecular ranks resulting from the use of different predicted values for the same properties. The distribution of ranks is used as a
sampling tool accounting for molecules which may rank at the top with one property prediction model but may also rank lower

with another. This allows for the refinement and reduction of the original data set without focusing only on the top options which

vises2 Chapter No.: 14342 Title Name: CMSE
Page Number: 44the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not
roof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



p1825

p1830

p1835

p1840

Comp. by: G.Rajesh Stage:
Date:13/8/18 Time:15:58:25

Table 15t0080 Key features of contribution employing advanced computing infrastructures

Reference Summary of contribution Area of contribution

Satyanarayana et al.405,406 Use of Grid computing software-network for regression of GC models Advanced computing infrastructures
Papadopoulos and
Linke,326 Papadopoulos
et al.150

Workflows and services for deployment and automated management of CAMPD and
CAMPCD tools in massively distributed and geographically dispersed Grids and
Clouds

Advanced computing infrastructures and
services

Gebreslassie and
Diwekar285

Multiagent computing framework for autonomous management of cooperative,
parallel, optimization-based CAMD

Advanced optimization and decision-
making architectures for parallel
environments
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may be biased due to uncertainty in the predictions. The approach builds on the work of Papadopoulos et al.395 for the systematic
selection of CO2 capture solvents. Zarogiannis et al.165 use the same approach for the selection of mixtures under property
uncertainty.

Martin and Martinez396 introduce uncertainty in the blend design problem of Martin and Martinez308 and perform probability
distribution sampling to propagate uncertainty through the underlying model. They consider external sampling where once a
sample is generated, the stochastic optimization problem is solved as a deterministic one by considering a sample average
approximation in the objective function. A systematic scenario reduction approach is used to reduce the computational effort.
Internal sampling is also considered where sampling is performed internally in the algorithm which re-computes the updated
sample set together with the samples generated in all previous iterations. To reduce the computational effort, they propose a
criterion which considers the difference in objective functions over two consecutive iterations; the algorithm terminates if this
difference is lower than a threshold value. This probably means that the addition of new samples does not change the objective
function value significantly.

Ng et al.397 propose a CAMuD approach where uncertainty is introduced in a fuzzy representation. Uncertainty in molecular
properties is first quantified by considering the standard deviation of the average variation between the measured and estimated
values in regression analysis for the derivation of the property prediction model. The standard deviation is used to extend the range
of the desired upper and lower bounds of the considered properties. These bounds are then used as part of the approach proposed
by Ng et al.359 and the problem is solved using the Max–Min and two-phase approaches proposed by these authors. A similar
method is further used by Ten et al.398 for CAMuD which includes indices for safety and occupational health. The authors use the
score approach of Ten et al.364 (see “Multi-Objective Optimization” section), where uncertainty is implemented by considering the
standard deviation of the property prediction models. The overall problem is formulated through a fuzzy representation based on
Ten et al.,366 while the appearance of discontinuous functions is treated through disjunctive programming.

Frutiger et al.399 propose a systematic approach for molecular selection based on process performance under uncertainty in the
molecular properties. The method is developed and applied for ORC working fluids and processes. The proposed approach first
identifies the optimum process parameters for a large data set of working fluids. Instead of using optimization to identify the
optimum process parameters, all working fluids are tested in terms of their process performance (net power output of ORC) within
a uniformly sampled space of process parameters (turbine inlet pressure and temperature). The combination of process parameters
that gives the higher net power output is selected as the optimum design point for every working fluid. For this design point, the
authors employ a Monte Carlo procedure for uncertainty analysis. Fluid property uncertainty is specified based on available data
and the Latin hypercube sampling (LHS) method400 is utilized for probabilistic sampling of the fluid property input space of each
working fluid. The generated samples are then propagated through the ORC model to calculate the net power output (performance
criterion). Confidence intervals are then calculated for the net power output with respect to the corresponding input property value
and the working fluids are ranked considering the uncertainty.

Frutiger342 further proposes a reverse engineering approach for CAMuPD of working fluids for heat pumps, following a
continuous representation. A set of molecular property descriptors is used as the set of continuous design variables in order to
identify working fluids. This set contains all the necessary descriptors (i.e., critical temperature and pressure, acentric factor,
molecular weight, and heat capacity correlation parameters) to calculate the desired process properties through a cubic EoS. The
working fluid design space specified by combinations of these descriptors is systematically sampled using a Monte Carlo approach.
The generated samples represent a virtual working fluid as they do not necessarily correspond to an existing molecular structure or
one that can be predicted by GC methods. Each virtual working fluid is introduced into process simulation and they are all ranked
based on a process performance index. The derivative-based global sensitivity analysis approach of Kucherenko et al.401 is then used
to identify the descriptor that has the highest sensitivity with respect to the process performance index and this information is
represented through a weight. Next, the virtual fluids are compared with real fluids obtained from a database and a distance
function is developed to determine the real fluid that lies closest to each virtual fluid. The distance function accounts for uncertainty
in properties, hence it is calculated based on the distance of each virtual fluid property from the upper and lower bounds of the real
fluid property. These bounds are calculated from the confidence intervals provided for each fluid property in the database where

they were retrieved from. The previously calculated weights are also used in the distance function to ensure that properties with
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higher sensitivity toward the process performance measure have a higher impact on the identification of matching real fluids. After
the identification of the real fluids, the approach of Frutiger et al.399 is used for selection of the best fluid-process scheme under
uncertainty.

Frutiger et al.402 further propose different ways for combining CAMPDwith uncertainty in molecular properties. A first approach
includes the utilization of GC-based CAMPD and the application of the methodology of Frutiger et al.399 for the evaluation of
uncertainty. A second approach includes the incorporation of uncertainty within CAMPD. The authors quantify the uncertainty of
GC parameters through the systematic methodology of Frutiger et al.403. A Monte Carlo approach is then used to generate samples
which represent scenarios implemented as constraints in the CAMPD problem. The latter is then solved for each scenario using an
optimization approach. Fluids that appear most often in all scenarios are considered as the desired options. The third approach is a
summary of work presented in Frutiger.342

Santos-Rodriguez et al.313 address the design of working fluids for ORC under uncertainty considering either directly the
stochastic problem or the perfect information problem. The former is a CAMuPD formulation where one optimum design is
identified considering all potential uncertain scenarios during optimization. The latter includes the solution of CAMPD problems
for each identified scenario of the uncertain parameters and the identification of one optimum design for each problem.

Andres-Martınez et al.404 propose two approaches of investigating property uncertainty in CAMD of working fluids for ORC. The
first approach involves solution of the CAMD problem and then use of a Monte Carlo methodology at the optimal solutions for
quantification of property uncertainty and propagation through the property prediction models used as objective functions in
CAMD for every identified molecule. The Monte Carlo methodology includes the assignment on GC parameters of probability
distributions, sampling through LHS, and calculation of the properties through GC models. The second approach includes direct
solution of the CAMuD problem, cast as an MINLP with uncertainty considered in the linear constraints. Uncertainty is introduced

as random, symmetrical perturbations around the nominal property values.
Molecular, Process, and Control Design

Jaksland and Gani303 formulate a CAMPCD problem where the identification of an optimum molecule is also part of integrated
process and control design. The authors acknowledge that molecular properties affect the process flow sheet design characteristics
under nominal and variable operation. The presented case studies include either integrated molecular and process design or
integrated process and control design problems, hence the CAMPCD formulation is not solved.

Ulas and Diwekar344 propose a multistage CAMPCD framework focusing on batch separation. Firstly, candidate solvents are
selected based on CAMD, whereas the optimal batch column configuration is then selected based on optimization and heuristics
using MOO. Finally, the optimal operation policy is found for the best column configuration. The authors consider the static
thermodynamic uncertainties at the CAMD solvent stage and dynamic uncertainties at the process design stage to address their
effects on operation. The approach is exemplified through a case study on acetonitrile–water separation where two solvents and a
batch column with a middle vessel result from the optimum solvent and process design stage. For this column, the authors then
identify an optimum control policy for the reboiler to increase the product recovery.

Papadopoulos and Seferlis169 propose the assessment of solvents resulting from a CAMPD approach based on their nominal
economic performance and their performance under the influence of disturbances. In a MOO sense, they show that solvent and
process schemes which are optimum under nominal operation may exhibit low economic performance at conditions different than
the nominal design settings (see also discussion in “Computer-Aided Molecular, Process and Control Design” section).

Papadopoulos et al.162 present a generic CAMPCD framework, with the main stages shown in Fig. 9. The first stage is based on
the work of Papadopoulos and Linke161,163,321 where solvents are designed in MOO CAMD. The resulting Pareto set of solvents is
introduced into process flow sheet design in order to obtain a first assessment of nominal economic process performance. This stage
serves to identify optimum solvents based on process performance measures, providing also insights of potentially useful process
features. Solvent–process schemes of high performance are then selected, and the solvents are introduced into process design using
higher-fidelity process models. This stage serves to verify the high economic performance of the selected solvents and to assess their
ability to reach desired operating set-points under nominal operation. At this point, it is clear that solvents unable to reach set-
points under nominal operation will also be unable to reach them in view of disturbances, hence they may be eliminated. The
selected solvent–process schemes are then introduced into a stage where their performance is evaluated under disturbances, whereas
control structures are proposed that ensure efficient compensation for their effects. An optimum control problem is formulated
where the objective function penalizes deviations from the optimum set-points of the controlled variables and the use of resources
(manipulated variables) to bring the system back to its optimum operation (set-points). The problem is approached through a
nonlinear sensitivity analysis method which evaluates the impact of multiple disturbances on process performance considering
simultaneously multiple controlled parameters and resources (manipulated variables) needed to restore optimum operation. The
proposed approach avoids the use of dynamic process models. The nonlinear sensitivity analysis enables the identification of
undesired cases where small in magnitude disturbances require large variations in the steady state of the manipulated variables.
Such behavior indicates limited ability by the solvent/process design configuration to address the disturbances and implies a

compromise in the achieved dynamic performance by the control system.
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Fig. 9f0050 Main stages of the CAMPCD approach of Papadopoulos et al.162 Reproduced from Papadopoulos, A.I.; Seferlis, P.; Linke, P., Chem. Eng. Sci. 2017, 159,
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Exploitation of Advanced Computing Infrastructures

The previous sections highlight very significant technological developments toward the solution of problems which include high
combinatorial complexity as well as molecular and process models of high fidelity. All these developments may also be further
supported by the exploitation of advanced computing infrastructures (Table 15).

Satyanarayana et al.405,406 propose the use of Grid computing software for the parallelization of calculations in a computer
network to regress GC models for the prediction of polymer properties.

Papadopoulos and Linke326 and Papadopoulos et al.150 propose an architecture for the efficient deployment of CAMPD and
CAMPCD tools and workflows in massive computing environments such as Grids and Clouds to address the high computational
effort. Main components of the architecture are illustrated in Fig. 10. The authors develop a web portal to render different tools used
in CAMPD and CAMPCD available to end users. The portal further serves as a connecting node between remote, geographically
distributed computing resources and external databases available through web channels. Such resources involve exploitation of
computer networks for distribution of the design calculations and available data repositories for storage of design-related
information. The utilized computing networks include over 3000 processing units, while the data repositories have a storage
capacity of over 100 TB. The geographically distributed computing resources are managed by middleware available through a third-
party organization, which provides generic functionalities, is hard to use, and lacks the automation levels matching particular
requirements of a problem such as CAMPD. The authors develop services that allow user-friendly access of the service functions
available at the third-party middleware through the web portal. A major service includes the workflow generator, which allows the
user to select from a number of developed molecular and process design workflows. The job scheduling service exploits a collection
of services available at the third-party middleware to launch the workflow in the distributed resources for execution, while it
dynamically manages the selection of appropriate execution resources, the storage of generated data, and the termination of the
workflow execution. Data management and resource allocation services are also available independently of the job scheduling
services that allow treatment of the generated data (i.e., storage, retrieval, etc.) in the available storage resources as well as querying
of the status of the available storage and computing resources. Furthermore, appropriate service functions are developed that allow
querying and retrieval of results in third-party web-based databases through the web portal.

Gebreslassie and Diwekar285 propose a homogeneous multiagent optimization framework which is applied in CAMD. The
framework employs agents which include an ACO algorithm for design within different areas of the design space and from different
starting points. The agents communicate solutions with each other through a global information sharing environment. The
communicated solutions are exploited by agents to improve their optimization search and to avoid local optima. Each agent
establishes a communication protocol with the global information sharing environment which includes all the operations for
solution selection and communication, as well as scheduling and execution of the agents. The latter are implemented in parallel

154–176 by permission of Elsevier.
computing environments through services available in commercial software.
Methodologies for Reactive Systems or QM-Based Approaches

This section presents an overview of methodologies addressing reactive systems or employing QM models for reactive or

nonreactive processes. See “Molecular Design” section discusses contributions for molecular design (Table 16), whereas see
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Fig. 10f0055 (A) Grid and cloud computing architecture for CAMPD and CAMPCD, (b) details of services.150,326 Reproduced from Papadopoulos, A.I.; Linke, P.;
Seferlis, P., Integrated Multiobjective Molecular and Process Design: Operational and Computational Frontiers. In Tools for Chemical Product Design: From Consumer
Products to Biomedicine. Computer Aided Chemical Engineering. Martin, M., Eden, M. and Chemmangattuvalappil, N. Eds.; Elsevier: Amsterdam, 2016, Vol. 39,
Chapter 11, pp. 269–313 by permission of Elsevier.
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Fig. 10 (Continued)

CMSE: 14342
Computer-Aided Molecular Design: Fundamentals, Methods, and Applications 49

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not
allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in
colour in all electronic versions of this book.



Comp. by: G.Rajesh Stage: Revises2 Chapter No.: 14342 Title Name: CMSE
Date:13/8/18 Time:15:58:26 Page Number: 50

Table 16t0085 Overview of approaches for CAMD in reactive systems or using QM models

References Key features

CAMD in reactive systems

Buxton et al.407,408 Reaction path synthesis approach where CAMD is used for the identification of potential raw materials and
stoichiometric coproducts based on the desired product characteristics

Gani et al.409,411, Folic et al.410 Knowledge-based approach for the identification of solvents that promote chemical reactions, allows the
incorporation of reaction rate models or data, if available

Folic et al.389,391 Regression of solvatochromic equation coefficients for reaction rate constant prediction, investigation of
deterministic and stochastic CAMuRD and CAMDuRPD cases, global sensitivity assessment of coefficients prior to
stochastic case implementation, solvolysis reaction

Papadopoulos et al.394 CAMD for CO2 capture using chemical absorption where CO2 solvent solubility is predicted rigorously using
SAFT-based models that simultaneously account for phase and chemical equilibrium, without the need to
postulate reaction products or mechanisms

Chemmangattuvalappil and Eden,297 Dev
et al.,435,436 Dev369

Systematic approach to represent molecular structures through signature descriptors used in CAMD to track
changes in structures due to reactions, extension to account for nonlinear structure–property models and to
modeling of the reaction rate constant in Diels-Alder reaction

Gerbaud et al.413 Combination of CAOS437 approach with CAMD to identify molecules originating from biorenewable feedstocks, to
propose sustainable synthesis pathways, and to improve their properties

QM models in CAMD of reactive systems

Stanescu and Achenie,414 Stanescu
et al.415

QM models used after GC-based CAMD have been completed, for the evaluation of selected solvents, DFT
calculations

Hechinger et al.,416 Dahmen and
Marquardt418

Combination of CAMD with RNFA for the identification of fuel and blend candidates and the identification of
biorenewable reaction pathways for their production, MOO, blend design, DFT calculations

Struebing et al.155,419 CAMRD is performed using a surrogate model for the reaction rate constant, the model is updated based on QM
calculations for the optimum solvent found from the solution of CAMRD, DFT calculations, continuum solvation
model

Siougkrou159 CAMRD is performed using QM calculations directly in MINLP, without a surrogate model, assumptions are made
regarding fixed geometry from gas to liquid phase to facilitate computations. The assumptions are lifted by
proposing an approach similar to Struebing et al.,155 but with a Kriging approach for surrogate model development
instead of the solvatochromic equation, DFT calculations

Zhou et al.392 Derivation of surrogate model using QM prior to CAMRuD and the use of the surrogate to directly solve an MINLP,
testing of a deterministic and a stochastic problem, DFT calculations, COSMO model

Austin et al.149 QM-CAMbRD approach using COSMO-RS and COSMO-SAC, GC developed from a public database of s-profiles,
direct optimization combining DFO and NLP

De Vleeschouwer et al.423,425 Inverse, optimization-based evaluation of 2-naphthol derivatives using QM models based on acidity constant
calculations, DFT calculations

QM models in CAMD of nonreactive systems

Harper et al.189 Multilevel approach with successive use of increasingly detailed models to gradually reduce the number of potential
solvent candidates, use of QM software proposed to evaluate few promising selected solvents

Lehmann and Maranas172 Decomposition approach, selected solvents satisfying criteria are introduced in QM model calculations in the course
of CAMD, DFT calculations, continuum solvation model

Sheldon et al.234 QM in the course of CAMD, with GC property values as input, calculation of free energy of solvation, direct solution of
MINLP, continuum solvation model

Satyanarayana et al.426 Polymer repeat units identified through CAMD and selected units are evaluated using molecular dynamic
simulations

Hada et al.299 QM-CAMD of ionic liquids using DFT to derive infrared spectra for a training set, results used for development of
latent variable property prediction models, CAMD performed using property clustering technique

Farahipour et al.427 Screening of ionic liquids using COSMO-RS for calculation properties related to their performance as CO2 capture
solvents, gradual reduction of initial set based on satisfaction of constraints

Peng et al.428 QM-CAMD of ionic liquids using GC-COSMO and COSMO-SAC, derivation of s-profiles and cavity volumes for a data
set before CAMD, DFT calculations

Zhang et al.429 Approach similar to Peng et al.428, use of the GC method of Zhang et al.430 and of a mixed SA-GA algorithm for
CAMD of ionic liquids

Scheffczyk et al.259 QM-CAMD using COSMO-RS in the course of molecular design with online calculation of s-surfaces (at BP-TZVP-MF
QM level), selected molecules are reevaluated at a more accurate BP-TZVPD-FINE QM level in the refinement
phase

Zhao et al.432 Screening of large database of ionic liquids, calculation of thermodynamic properties through GC or COCMO-RS,
gradual elimination of candidates based on thermodynamic and environmental and health properties

Ahmad et al.433 Design of postcombustion CO2 capture solvents using GC-CAMD and subsequent estimation of heats of formation
for selected solvents using QM models, considering two main reaction mechanisms to derive stoichiometry,
DFT calculations
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Table 17t0090 Overview of molecular and process design approaches considering reactive processes and/or QM models

References Key features

Folic et al.391 CAMRPD using solvatochromic model for reaction rate constant prediction, regression of rate constant model, GC model for rate
constant prediction, simple CSTR models, deterministic and stochastic CAMRPD evaluation, direct optimization, Menschutkin
reaction

Mac Dowell et al.,343 Pereira
et al.152,438

CAMPD for CO2 capture using chemical absorption where CO2 solvent solubility is predicted rigorously using SAFT-based
models that simultaneously account for phase and chemical equilibrium, without the need to postulate reaction products or
mechanisms

Salazar et al.439 Molecular design, use of eNRTL and UNIFAC at process level, chemical CO2 capture solvents and processes, decomposed
approach

Siougkrou et al.377 Design of GXL blends, identification of optimum blend concentration and CO2 cosolvent from prespecified set of options, process
flow sheet comprising CSTR, separator and compressor, Diels-Alder reaction, process cost and solvent inventory
optimization, direct approach

Papadokonstantakis et al.325 Chemisorption solvent and process design for CO2 capture, thermodynamic, reactivity and sustainability criteria at solvent
design stage, economic and sustainability criteria at process design stage, rigorous equilibrium column models, NLP process
optimization considering different flow sheet structures and operating conditions, SAFT-VR thermodynamic model,
decomposed approach

Zhou et al.442 QM-CAMRPD using COSMO model, reaction rate constant prediction from linear model regressed based on s-profiles, COSMO
model calculated once for set of solvents used to derive reaction rate constant model, reactor, distillation column and heat
exchanger flow sheet model, maximization of profit, Diels-Alder reaction, direct MINLP formulation

Liu et al.443 Screening of ionic liquids with properties predicted through COSMO-RS, evaluation of their performance in process simulations
Song et al.444 Ionic liquid structure enumeration and extractive desulfurization process simulation, gradual reduction of ionic liquid options

based on constraint satisfaction, use of UNIFAC and COSMO-RS for calculation of missing parameters and results validation
Scheffczyk et al.431 QM-CAMPD using COSMO-RS in the course of molecular and process design using a GA, design phase includes TZVP-MF

implementation of COSMO-RS and pinch-based process separation process model with infinite number of stages, refinement
stage includes TZPVD-FINE COSMO-RS with pinch-based process model for selected solvents first and then use of optimum
results in ASPEN PlusW stage-by-stage rigorous simulations, decomposed approach
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“Molecular and Process Design” section (Table 17) discusses contributions for molecular and process design. With respect to
reactive systems and processes, this section includes contributions where the designed molecule may promote the chemical reaction
by directly affecting kinetics (e.g., reaction rate) or participates in the chemical reaction as a reactant or as a product. Contributions

where a molecule participates in reactive processes as a mass separating agent are not considered here.
Molecular Design

CAMD in reactive systems
In the area of reaction path synthesis, Buxton et al.407,408 propose a systematic approach for reaction path synthesis which enables
the identification of potential alternative routes for the production of a desired product and the selection of the optimal route.
Central to the proposed methodology is the use of CAMD for the generation of alternative candidate comaterials (rawmaterials and
stoichiometric coproducts) based on the structure of the product as well as desired chemical and property constraints. After
determining the comaterials, the methodology involves the identification of potential stoichiometries using a knowledge-based
approach combined with an optimization selection procedure, the generation of corresponding reaction mechanisms, and the
evaluation of the mechanism steps.

Gani et al.409 propose a systematic, knowledge-based approach for the screening of solvents as reaction media. The methodology
considers and analyzes various different reactions and classes and it allows the incorporation of reaction rate models or data. It
includes a scoring system to rank-order solvents, which is based on properties such as reactivity, phase-split formation, solubility
toward desired solutes, heating/cooling, association/dissociation, selectivity, etc. The work is further extended to multistep410,411

and replacement reaction systems.411 The proposed steps and rules as well as the scoring system are implemented to all the reaction
steps where solvents are identified and successively eliminated, resulting in few options worth of further analysis and
experimentation.

Folic et al.389 propose a CAMRD approach where parameters for the solvatochromic equation are regressed to predict the reaction
rate constant. The equation is then used in the design of solvents, considering both deterministic and stochastic scenarios. Prior to
the stochastic application, the authors perform global sensitivity analysis to evaluate the effect of uncertain coefficient ranges on the
model and to identify representative combinations of the coefficients. The method is further used by Folic et al.391 in CAMRPD
discussed in “Molecular and Process Design” section.

Papadopoulos et al.394 propose the design of solvents for CO2 capture through chemical absorption. The CAMD stage includes
calculation of CO2 solubility in solvents using the Hansen solubility parameter412 and of solvent reactivity based on basicity
constant, among other properties used as design criteria. Selected solvents are then evaluated rigorously with respect to CO2

solubility based on vapor–liquid equilibrium predicted from a GC version of SAFT-g-SW134, 135 EoS. This EoS accounts implicitly
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for both phase and chemical equilibrium without the need to postulate reaction products or mechanisms.

f the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not
 proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



p1925

p1930

s0320

p1935

p1940

p1945

p1950

p1955

Comp. by: G.Rajesh Stage: Re
Date:13/8/18 Time:15:58:27

CMSE: 14342
52 Computer-Aided Molecular Design: Fundamentals, Methods, and Applications

To protect the rights of 
allowed to publish this p

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in
colour in all electronic versions of this book.
Chemmangattuvalappil and Eden297 propose a systematic approach to represent molecular structures as signature descriptors
and use it in CAMD to track changes in structures due to reactions. The underlying idea is that the changes in the chemical structure
can be correlated with the changes in the properties of the molecule. Therefore, the changes in the molecular structure due to
reactions can be represented as a function of the property. Dev369 extends this approach for design of reactants and products
irrespective of their numbers, while also using nonlinear models for structure–property predictions. Furthermore, Dev369 evaluates
different machine learning algorithms with respect to modeling the reaction rate constant of a Diels-Alder reaction based on
reactants.

Gerbaud et al.413 address the design of molecules originating from renewable feedstocks and with an eco-friendly synthesis
pathway. A computer-aided organic synthesis (CAOS) approach is used which takes as input a bio-sourced building block, a list of
readily available coreactants and a list of eco-friendly chemical transformations suitable for large-scale production. The approach
then enumerates all possible products, resulting in thousands of structures. These molecules exhibit an overall performance that is
usually not satisfactory. Then, the CAMD approach of Heintz et al.153 is used to enhance the properties by proposing derivatives
thanks to additional substitutes. The work is part of a broader product design framework which also considers (a) an intelligence
phase prior to molecular design including strategic, tactical, and operational decisions regarding the products that should be
developed and (b) a choice phase where experimental work is performed after molecular design for selected candidate molecules.

QM models in reactive systems
Stanescu and Achenie414 and Stanescu et al.415 propose a QM-CAMRD approach for the identification of solvents that create a
homogeneous reaction mixture, while at the same time promote the Kolbe–Schmitt reaction. DFT calculations are used to confirm
the reaction mechanism, and to compute the energies and thermodynamic properties of the optimized structures and transitions
states along the reaction path. Solvents are designed using GC-CAMD and few of them are selected for calculation of the reaction
rate constant using the transition-state theory. The QM calculations are therefore used as a final step, after the solvents have been
designed.

In a different line of work, Hechinger et al.416 propose the combination of reaction network flux analysis (RNFA)417 with CAMD
for the identification novel biofuels and chemical pathways of producing them. CAMD is used in a strategy where optimum
molecules are identified based on properties which point toward useful fuels. Then, a reaction network toward these components is
constructed in order to identify and compare suitable production routes. A different strategy is also considered where fuel-related
properties are calculated for all molecules in a prespecified reaction network and are then employed as performance criteria in order
to identify target molecules and the corresponding synthesis pathways using RNFA. In this case, QMmodels such as DFT are used for
the calculation of properties. The latter include the standard enthalpies of formation and combustion, the normal boiling point, and
the oxygen content. The work is extended by Dahmen andMarquardt418 in a four-stage approach for the design of biofuel blends. In
stage 1, palette compounds are identified using CAMD, followed by the development of a conversion pathway map in stage 2. Stage
3 involves the blend design problem formulation which includes process-related constraints such as production yield as well as
pathway models. Stage 4 includes the design and analysis of the blends using MOO.

Struebing et al.155 propose a QM-CAMRD approach that employs a surrogate model in the course of CAMD to reduce the
expensive QM calculations, which are performed once in each iteration after the solution of the optimum CAMD problem. The
methodology is illustrated in Fig. 11, obtained by Struebing et al.419 who present a more extensive implementation of the approach.
An initial set of solvents is used to derive a surrogate model, namely the solvatochromic equation, for the prediction of the reaction
rate constant. CAMD is then performed using the surrogate model and the optimum solvent is evaluated with the QM model. The
results are used to update the initial set of solvents and the surrogate model which provides increasingly reliable predictions as more
optimum solvents are included in the regression set at each iteration. The iterations are repeated until no new optimum solvent is
found. The method enables the evaluation of 1300 solvents for the Menschutkin reaction with only 10 calls of the QMmodels. The
latter include DFT with SMD continuum solvation model.420 Struebing et al.419 extend the approach to take into account the impact
of solid reactant solubility and solvent density on solvent choice.

Siougkrou159 proposes a QM-CAMRD approach where the reaction rate constant of each designed solvent is calculated directly
through QM models. To facilitate computations, fixed molecular geometry is considered when moving from the gas to the liquid
phase. More details regarding the resulting MINLP formulation are reported in “Deterministic optimization approaches in
molecular design” section. As noted in Siougkrou,159 this assumption introduces uncertainty in the design. To address this
uncertainty, the author adopts the approach of Struebing et al.,155 but the employed surrogate for reaction rate constant prediction
is now a Kriging236 model. Kriging interpolation models have advantages compared to conventional linear regression. In the latter
approach, predictions are provided based on a model (e.g., polynomial) that is postulated in advance. The model parameters are
selected to optimize some criterion of best fit at the data points. Kriging produces an interpolation function based on a covariance
model derived from the data rather than an a priori model of the interpolating function.421 Kriging further accounts for uncertainty
in modeling and provides a measure of confidence in the predictions. The use of this approach by Siougkrou159 results in a solvent
which exhibits a 293% increase in the reaction rate constant compared to using the solvatochromic equation as the surrogate model
for the Menschutkin reaction. The method is also applied in a Cope elimination reaction with a similarly high increase in the rate
constant, compared to the best solvent of the initial set.

Zhou et al.392 propose a QM-CAMRD approach investigating both deterministic and stochastic solvent design (CAMuRD). The
authors derive a surrogate model first and then use it in molecular design. The treatment of uncertainty is reported in “Molecular

Design Under Uncertainty” section.
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Fig. 11f0060 QM-CAMRD approach of Struebing et al.419 Reproduced from Struebing, H.; Obermeier, S.; Siougkrou, E.; Adjiman, C.S., Chem. Eng. Sci. 2017, 159,
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Austin et al.149 propose a generic QM-CAMbRD approach exploiting models such as COSMO-RS and COSMO-SAC,422 which is
illustrated for both reactive and nonreactive systems. The approach is based on the CAMbD framework of Austin et al.149 which is
described in “Mixture and Blend Design” section. In the QM-CAMbRD approach, the necessary component and mixture properties
are calculated through s-moments, s-profiles, and cavity volumes of every species in solution from specifically developed GC
models. The GC models are derived from data already available in a database, so there is no need for DFT or other QM calculations
at any stage. The approach is illustrated for a liquid–liquid extraction solvent design case and for the design of solvents needed in the
Menschutkin reaction. In the latter case, the authors address the design of both a single solvent and a mixed solvent. In both cases,
the authors report significant performance improvements compared to solvents from the literature.

A non-GC, inverse engineering approach which applies optimization simultaneously with QM models for the calculation of
molecular properties related to reactivity is proposed by De Vleeschouwer et al.423 The approach uses different substituents to
generate 2-naphthol derivatives which are evaluated with respect to their acidity when excited from the singlet ground state to the
first singlet excited state. The change in acidity constant exhibits a difference of seven orders of magnitude. For a set of 10 possible
substituents on each of seven naphthol sites, the design space is in the size of 107 structures. DFT calculations are used to determine
the acidity constant, while the optimization approach used is the Best First Search,424 a BB-type algorithm. Variations of this
algorithm are also proposed in De Vleeschouwer et al.425 for inverse engineering of molecules using QM models.

QM models in nonreactive systems
Harper et al.189 propose a systematic methodology (reviewed in “Generate and Test Approaches” section), where after three CAMD-

69–83 by permission of Elsevier.
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The latter is used to evaluate energy minima of different conformers and to predict desired properties. Applications are reported for
nonreactive separation solvent design.

Lehmann andMaranas172 propose a QM-CAMD approach which uses a GA and combined GC-CAMDwith ab initio QMmodels
in a three-step approach. The first step includes the GC-CAMD of molecules using MILP or complete enumeration. The second step
includes GA-based GC-CAMD in order to fine-tune the GA control parameters based on the results of the first step, so that it finds
the maximal average number of globally best solutions. The fine-tuned GA is used in the third step which includes the actual
QM-CAMD approach, where QM models are used in the course of CAMD. Molecules are generated by the GA and their properties
are evaluated based on GC. Those that are predicted to perform close to a desired target performance are introduced into QM
calculations. This reduces the number of expensive ab initio calculations, together with a database that registers previously
calculated structures so that they are not re-calculated. QMmodels include DFT calculations and an internal geometry optimization
step which finds a local energy optimum. The desired properties are then evaluated for the converged geometries. Continuum
solvation QM models are also used in one case. Applications involve refrigerant and solvent design.

Sheldon et al.234 also use QMmodels in the course of CAMD. A continuum model of solvation is used, employing GC property
values as input in order to calculate the free energy of solvation, which is the objective function in optimization. Details regarding
the optimization approach are reported in “Deterministic optimization approaches in molecular design” section.

Satyanarayana et al.426 use the approach of Harper and Gani190 to first design polymer repeat unit structures satisfying a subset of
(macroscale) properties. Then, a polymer repeat unit is selected for further analysis with respect to properties at the microscale using
molecular dynamic simulations.

Hada et al.299 propose the use of QMmodels as a first step toward the design of ionic liquids using a CAMD approach based on
property clustering. DFT calculations are used to derive the necessary infrared spectra descriptors (based on a training set of ionic
liquids) in order to develop latent variable property models the prediction of viscosity, melting point, and density. These models are
used in order to develop property targets which are matched by ionic liquids generate using a property clustering technique.

Farahipour et al.427 propose a systematic screening approach for the identification of ionic liquids as CO2 capture options.
Initially, cation options are screened based on viscosity and the ones with low viscosity are further matched with an arbitrary anion
and screened based on the absorption–desorption index (ADI) which accounts for Henry constant. The top 10 are selected and all
combinations are evaluated in terms of ADI. Anions contributing to low ADI are selected and the ones contributing to low viscosity
are further screened in their combinations with selected cations and are further evaluated in terms of melting point. The ones
satisfying the latter constraint are selected based on their ADI values.

The GC-COSMO of Mu et al.146 is extended by Peng et al.428 for the design of ionic liquids. The GC is derived through DFT
calculations (optimization to the lowest energy in the ideal gas phase) for a dataset of 828 cations and 61 anions. The GC is
introduced into COSMO-SAC for the mixture property calculations required in the applications of liquid–liquid extraction and
postcombustion CO2 capture. A similar approach is used by Zhang et al.429 for the design of ionic liquids, but the GC method is
based on the work of Zhang et al.,430 who propose a new approach of predicting the surface charge density of ionic liquids.
Furthermore, the CAMD optimization algorithm is a mixed SA-GA approach. Scheffczyk et al.259 propose a QM-CAMD approach
based on COSMO-RS. The approach is detailed in “Molecular and Process Design” section as part of the QM-CAMPD framework
proposed by Scheffczyk et al.431

Zhao et al.432 propose a systematic screening approach of a large database of ionic liquids. The first step involves the
identification of the gas separation goals to help determine the screening objectives. The second step involves the refinement of
Henry law constant using COSMO-RS and calculation of properties such as selectivity and absorption separation index. The
resulting pool of ionic liquids is further evaluated in terms of toxicity, water/octanol partition coefficient, viscosity, and melting
point, based on existing data, hence forming a new pool of candidates. In the fourth step, the viscosity, melting point, and ADI are
calculated using QSPR, GC, and COSMO-RS in order to select the final candidates.

Ahmad et al.433 propose a QM-CAMD approach for the design of solvents for chemical CO2 absorption. A GC-CAMD approach
is used first to identify amine solvent candidates. The reaction stoichiometry is evaluated for each one of them considering the
zwitterion mechanism for primary and secondary amines and the base-catalyzed hydration mechanism for tertiary amines.434 The
heats of formation for reactants and products are then calculated using DFT QM models, aiming to calculate the enthalpy of

reaction. The authors consider linear and branched amines.
Molecular and Process Design

Folic et al.391 propose a CAMRPD approach where the solvatochromic equation and a simple reactor process model are considered
to identify solvents which increase the desired product formation. The reactor model is a continuous stirred tank reactor (CSTR) and
enables the consideration of competing as well as consecutive reactions. In the former case, the aim is to maximize the formation of
the desired product and to suppress the formation of the undesired product. In consecutive reactions, the reaction that yields the
desired product is followed by another reaction that consumes it, hence the latter must be demoted. In both cases, the process
variables are the outlet concentrations of the reactant, as well as of the desired and side-reaction products. The method includes a
reaction model building step where the solvatochromic equation model is regressed from an initial set of solvents. The approach
further includes results for both deterministic and stochastic solvent design. In the latter case, a global sensitivity analysis approach
is employed to quantify the effect of uncertainty on model reliability and to determine the optimal solvent candidate, given this

uncertainty. The method is applied to a representative of the SN

2 reaction class, namely the Menschutkin reaction.
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Mac Dowell et al.343 and Pereira et al.152,438 employ the SAFT-VR102 EoS for CAMPD of CO2 capture processes using chemical
absorption. With this EoS, the phase and chemical equilibrium are considered implicitly, whereas process models are used in the
course of solvent design. Mac Dowell et al.343 design a blend and Pereira et al.152,438 design solvents using a continuous
representation of the molecular design space (see “Continuous Molecular Representations” section for details).

Salazar et al.439 propose the design of CO2 capture solvents for chemisorption systems in a two-step approach. First, CAMD is
used to design solvents considering properties such as Gibbs energy of reaction, CO2 solubility, and boiling point as performance
criteria to short-list few options, which are then introduced into process design using ASPEN Plus®. UNIFAC and electrolyte
NRTL440 parameters are fitted for the selected solvents in order to model the equilibrium at the process level. In this case, the
reaction mechanisms considered for the calculation Gibbs energy of reaction or the activity coefficient model parameters are not
disclosed.

Papadokonstantakis et al.325 propose a CAMPD approach for the design CO2 capture solvents and processes which builds on
Papadopoulos et al.394 (see “CAMD in reactive systems” section). Selected solvents designed through CAMD, where equilibrium,
reactivity, and sustainability properties as considered as performance criteria, are introduced into process design considering various
different, unconventional absorption/desorption flow sheets. Gate-to-gate sustainability assessment is considered for the investi-
gated solvent–process systems, together with their economic performance. SAFT-VR is used to account for phase and chemical
equilibria at both the solvent selection and process design stages.

The solvatochromic equation is used by Siougkrou et al.377 in the simultaneous blend design of gas-expanded liquids (GXL) and
the corresponding reactive separation process in which they are used. GXL comprise a liquid solvent and a compressible gas (usually
CO2); CO2 enhances gas solubility and mass transfer while the liquid solvent increases the solubility of liquid and solid solutes.
Considering CO2 as the compressible gas, the aim is to identify the optimum cosolvent (out of few prespecified options) and
concentration in the binary mixture. In the proposed approach, the solvatochromic equation is used to identify the reaction rate
constant of the mixed solvent. Solid–vapor–liquid equilibrium is calculated using the group-contribution volume-translated PR441

EoS. The process consists of a CSTR, a separator, and a compressor and is implemented in a Diels-Alder-type reaction. Process cost
and solvent inventory are considered as objective functions.

Zhou et al.442 propose a QM-CAMRPD approach for the design of solvents and processes for a Diels-Alder-type reaction. The
COSMO136 model is used in this case to derive s-profiles which quantify the number of surface segments that can be found within a
certain screening charge density s-interval. The areas within each interval are used as solvent theoretical descriptors to quantify their
effects on chemical reactions. A linear model is regressed using these descriptors to predict the reaction rate constant using a
prespecified set of solvents. The COSMO model and the required QM methods are therefore implemented only once for each
solvent in the set. A GC model is then developed for the prediction of the reaction rate constant using the derived descriptors. The
model is used in QM-CAMRPD of solvents for a process comprising a reactor, a distillation column, and a heat exchanger, with
recycle. The aim is to maximize profit by determining the optimum solvent molecular structure, reaction conversion, and the
product recovery using an MINLP formulation.

Liu et al.443 use an enumeration-based selection approach for the identification of ionic liquids used in separations. Desired,
solubility-based properties are calculated using COSMO-RS. Solvents are evaluated in terms of process performance through process
simulations. An enumeration-based approach is used also by Song et al.444 for the design of ionic liquids for an extractive
desulfurization process. Ionic liquid structures are enumerated and gradually eliminated until few of them are selected and
introduced into process simulations. UNIFAC is used for ionic liquids for equilibrium property predictions and COSMO-RS is
used to calculate missing UNIFAC parameters or to validate the results.

Scheffczyk et al.431 propose a QM-CAMPD approach where the COSMO-RS model is used iteratively in the course of CAMPD.
A GA is used for the generation of molecular structures and the operating optimization of a process. COSMO-RS is called for the
calculation of the properties required to evaluate each molecular structure in terms of process operation. To avoid increasing
computational effort, the approach involves a first phase where QM-CAMPD is implemented using molecular and process models
of lower fidelity and a second phase where selected molecules and process operating points are refined using molecular and process
models of higher fidelity. In the first phase, COSMO-RS is used at the TZVP-MF level while a COSMO database of molecules is
developed in order to avoid recalculating properties of already evaluated molecules. Furthermore, a pinch-based separation process
model is used which assumes an infinite number of stages and sharp component splits in order to identify lower bounds on process
variables, namely minimum solvent flowrate and energy demand. The separation process temperature is a degree of freedom in this
phase. The second, refinement phase employs COSMO-RS at the TZPVD-FINE level. This is initially used with the pinch-based
process models which are reoptimized for the selected molecules. The obtained molecules and process conditions are introduced
into ASPEN Plus® process models to perform the simulations necessary for the complete determination of the process operating

characteristics.
Applications

This section presents an overview of applications proposed in published literature for the previously analyzed models andmethods.
The presented tables include a brief description of the application together with keywords based on the problem classification and
on the algorithms used to address the design problem. Advanced molecular modeling and property prediction approaches are also

cited.
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Solvents for Industrial Separations, Reactive Separations, and Promotion of Reactions

Table 18 includes applications reported for separations, reactive separations, and promotion of chemical reactions. Solvents in
separation and reactive separation systems are generally used as mass separation agents, whereas in the case of promotion of
reactions they directly affect the reaction kinetics. The main processes included in Table 18 are the following:

• Liquid–liquid extraction

• Gas absorption

• Extractive distillation

• Extractive fermentation

• Blanket wash solvents for lithographic printing

• Metal degreasing

• Crystallization

• Reaction processes

Most applications involve solvent design for liquid–liquid extraction, gas absorption, and extractive distillation systems. Such
systems require liquid–liquid or vapor–liquid equilibrium prediction, hence activity coefficient models or EoS are commonly
utilized. For liquid–liquid extraction and gas absorption, selectivity of the solvent toward the solute and solvent–solute solubility is
among the most important properties. For extractive distillation, the solvent–solute relative volatility is very important. In all these
processes, azeotrope formation should be avoided. Furthermore, solvents are regenerated and recycled in a separate process, hence
this separation should be easy. Solvents should therefore be designed to exhibit a high boiling point difference with the solute and a
low energy of vaporization, among other requirements. To avoid solvent losses, the solvent–vapor pressure should be low, while in
liquid–liquid extraction the solvent should ideally be immiscible toward the raffinate to avoid liquid-phase losses.161,321 Extractive
fermentation processes represent a case of liquid-phase reactive extraction processes where the solvent is used to remove the desired
product hence enhancing the production. The requirements in solvent design are similar with liquid–liquid extraction processes,
with the addition that solvent and product should not react.326

Blanket wash solvents are needed in the printing industry in order to clean ink from lithographic printing presses.221 The latter
are used to transfer the printed image from a plate to a rubber or a plastic blanket and then to the paper. The quality of the printed
images depends on the ability to maintain a clean blanket. Blanket washes, consisting of organic solvents, are used to remove ink,
paper dust, etc. from the blanket cylinders.293 Solvents should be designed to dissolve ink, to enable minimum drying time,293

while their viscosity, surface tension, density, health, and safety impact characteristics should also be within desired limits.221 Their
vapor pressure should also be low to avoid vapor losses.

In the case of metal degreasing processes, the flow sheet requires a fresh solvent in the degreaser which is followed by
a regeneration unit.290,447 Solvent vapor losses from the regenerator are recovered in an absorption unit, whereas an off-gas
solvent stream from the degreaser is flared. The latter contains volatile organic content (VOC) which can be condensed and
reused instead of flaring. The solvent needs to have specific sulfur content to avoid corrosion, density to facilitate hydrodynamics
within the processes and vapor pressure to avoid losses. The range of these properties is different in the degreaser and the
absorber.

Crystallization is a process widely used for the production of high-value chemicals such as pharmaceuticals.448 The latter are
retrieved from their solutions in the form of solid crystals, hence solvents play an important role. Solvent design steps require
solid–liquid equilibrium calculations. The solvent–solute solubility should be high, but depending on the type of crystallization
this may vary. For example, Karunanithi et al.227 note that for cooling crystallization the solvent–solute solubility should be high at
higher temperature, but lower at lower temperature. This is because the solubility determines the equipment size, but the
temperature determines the yield. For other types of crystallization, such requirements may vary. The crystal morphology is also
affected by the solvent, hence affecting downstream processing such as filtering, washing, drying, packaging, handling, and storage.
Viscosity is also important as well as solvent toxicity and flammability.

In the case of designing solvents for promotion of chemical reactions, a key requirement is the maximization of the reaction rate
constant or of the reaction rate which also requires process-related calculations as it is a function of concentration. Additional issues
to consider include the effects of the solvent in the catalyst solubility and activity.159 A complete work that illustrates how solvents
with different reaction rate constants affect process design decisions is presented in Siougkrou et al.,377 where solvents are eventually

selected based on process economic criteria.
Catalysts, Adsorbents, and Ionic Liquids

The application of CAMD in the design of catalysts is reported in publications of Table 19. The properties considered in transition
metal catalyst design include electronegativity, which directly affects the catalyst activity, density, and toxicity.277 The oxidation state
is additionally considered in a follow-up work.278 The presented applications focus on homogeneous catalysts containing a
molybdenum center with organic substituents. The values imposed on the target properties allow the consideration of the designed
catalysts for epoxidation.277,278 and hydroformylation reactions.277

Benavides et al.288 propose the design of inorganic materials such as adsorbents using a GC approach. The latter is developed by

Benavides et al.289 to predict activity coefficients in the bulk phase and the adsorbate solid solution using UNIFAC. The method is
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Table 18t0095 Applications in the design of solvents for industrial separations, reactive separations, and promotion of reactions

References Application Problem and model class Algorithm Sections

Liquid–liquid extraction, gas absorption, extractive distillation, and other separations

Gani and Brignole2 Liquid–liquid extraction CAMD Generate and test Generate and Test Approaches
Brignole et al.181 Separation CAMD Generate and test Generate and Test Approaches
Joback184 Liquid–liquid extraction of acetic acid

from water
CAMD Generate and test Generate and Test Approaches

Macchietto et al.173 Liquid–liquid extraction and gas
absorption

CAMD NLP Deterministic optimization
approaches in molecular design

Gani et al.187 Liquid–liquid extraction, azeotropic, or
extractive distillation

CAMD Generate and test Generate and Test Approaches

Naser and Fournier174 Liquid–liquid extraction CAMD NLP, SQP Deterministic optimization
approaches in molecular design

Klein et al.,212 Gani and
Fredenslund214

Solvents Blend design SRLP Deterministic optimization
approaches in molecular design,
Mixture and Blend Design

Odele and
Macchietto160

Liquid–liquid extraction and
gas-absorption

CAMD MINLP, OA/AP Deterministic optimization
approaches in molecular design

Pretel et al.182 Separation CAMD Generate and test Generate and Test Approaches
Jaksland and Gani303 Separation of methyl acetate and

methanol
CAMPD, CAMPCD problem
formulation (no case
study reported)

Generate and test Generate and Test Approaches,
Molecular, Process and Control
Design

Hamad and
El-Halwagi304

Butane recovery in a waste-to-oil plant CAMPD MINLP Deterministic Optimization
Approaches

Pistikopoulos and
Stefanis305

Solvents for reduction of acrylonitrile and
dimethylformamide using gas
absorption, environmental impact
minimization, acetaldehyde recovery

CAMPD MINLP Deterministic Optimization
Approaches

Ourique and Telles271 Solvent for butanol recovery CAMD, molecular graphs SA Simulated annealing
Harper et al.189 Solvent for recovery of phenol, extractive

distillation solvent
CAMD, QM Generate and test Generate and Test Approaches, QM

models in reactive systems
Hostrup et al.231 Separation of acetone from chloroform

and of acetic acid from water
CAMPD Generate and

test, MINLP for
final solvent/
process options

Deterministic optimization
approaches in molecular design,
Generate and Test Approaches

Buxton et al.203 Solvents for reduction of acrylonitrile and
dimethylformamide using gas
absorption, environmental impact
minimization

CAMPD, CAMbD MINLP, GBD Deterministic optimization
approaches in molecular design,
Deterministic Optimization
Approaches, Mixture and Blend
Design

Harper and Gani190 Solvent for recovery of phenol,
replacement of benzene

CAMD Generate and test Generate and Test Approaches

Marcoulaki and
Kokossis269,270

Liquid–liquid extraction, extractive
distillation and gas absorption

CAMPD SA Simulated annealing, Stochastic
Optimization Approaches

Van Dyk and
Nieuwoudt254

Extractive distillation CAMPD, CAMbD GA Genetic algorithms, Mixture and
Blend Design

Kim and Diwekar167 Extraction of acetic acid from water CAMD, uncertainty HSTA Molecular Design Under Uncertainty
Kim and Diwekar273 Extraction of acetic acid from water CAMPD, MOO, uncertainty HSTA and NLP Stochastic Optimization

Approaches, Multi-Objective
Optimization, Molecular Design
Under Uncertainty

Giovanoglou et al.233 Batch separation CAMPD MIDO Deterministic Optimization
Approaches

Cismondi and
Brignole183

Separation CAMD Generate and test Generate and Test Approaches

Kim et al.328 Extraction of acetonitrile from waste
stream, batch separation

CAMPD, MOO – Stochastic Optimization Approaches

(Continued )
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Table 18 (Continued)

References Application Problem and model class Algorithm Sections

Lehmann and
Maranas172

Liquid–liquid extraction of benzene from
cyclohexane

CAMD, QM GA Genetic algorithms, QM models in
non-reactive systems

Karunanithi et al.226 Liquid–liquid extraction, process
constraints

CAMPD, CAMbD Framework for
MINLP
formulations

Deterministic optimization
approaches in molecular design,
Deterministic Optimization
Approaches, Mixture and Blend
Design

Xu and Diwekar255 Liquid–liquid extraction of acetic acid
from water

CAMD, uncertainty Efficient and
Hammersley
GA

Genetic algorithms, Molecular
Design Under Uncertainty

Xu and Diwekar256 Heterogeneous azeotropic distillation of
acetic acid from water

CAMPD, MOO, uncertainty MOEGA Stochastic Optimization
Approaches, Multi-Objective
Optimization, Molecular Design
Under Uncertainty

Ulas and Diwekar344 Batch separation of acetonitrile from
water

MOO, uncertainty, CAMPCD HSTA and NLP Molecular, Process and Control
Design

Papadopoulos and
Linke161

Liquid–liquid extraction and gas
absorption

CAMD, MOO SA Simulated annealing, Multi-
Objective Optimization

Papadopoulos and
Linke321

Liquid–liquid extraction, gas absorption
and extractive distillation

CAMPD, MOO SA Simulated annealing, Multi-
Objective Optimization

Yang and Song194 Liquid–liquid extraction CAMD Generate and test Generate and Test Approaches
Kazantzi et al.347 Acid gas purification CAMPD Property

clustering
Property Clustering and/or Reverse
Formulations

Eljack and Eden293 Liquid–liquid extraction of aniline,
blanket wash solvents

CAMD Property
clustering

Property Clustering Approaches,
Property Clustering and/or
Reverse Formulations

Song and Song274 Liquid–liquid extraction and extractive
distillation

CAMD SA Simulated annealing

Papadopoulos and
Seferlis169,
Papadopoulos
et al.162

Extractive distillation MOO, CAMPCD SA, NLP Molecular, Process and Control
Design

Papadopoulos and
Linke326,
Papadopoulos
et al.150

Liquid–liquid extraction CAMPD, MOO, Grid/parallel
computing

SA Exploitation of Advanced Computing
Infrastructures

Bommareddy
et al.349,350

Acid gas purification CAMPD Property
clustering

Property Clustering and/or Reverse
Formulations

Diky et al.393 Solvent design in ThermoData Engine of
NIST

Uncertainty Knowledge-
based
approach

Molecular Design Under Uncertainty

Kheireddine et al.352 Recycling of lubricating oils Blend and process design Property
clustering

Property Clustering and/or Reverse
Formulations, Mixture and Blend
Design

Gebreslassie and
Diwekar282,285

Extraction of acetic acid from waste
stream

Parallel computing Efficient ACO Ant colony optimization, Exploitation
of Advanced Computing
Infrastructures

Herring and Eden257 De novo molecular design, design of
molecules with desired boiling point

CAMD, spatial fragment
descriptors

GA Genetic algorithms

Zhang et al.232 Extraction CAMD General MILP/
MINLP
formulation

Deterministic optimization
approaches in molecular design

Scheffczyk et al.259 Liquid–liquid extraction of phenol and
hydroxymethylfurfural from water

CAMD, QM GA Genetic algorithms, QM models in
non-reactive systems

Khor et al.361 Oil extraction from palm pressed fiber,
safety and health indices

CAMD, MOO Disjunctive
programming,
fuzzy
representation

Multi-Objective Optimization

Ooi et al.362,363 Solvents for oil extraction from palm
pressed fiber, safety and health indices

CAMD, MOO MILP Multi-Objective Optimization

Ten et al.398 Extraction of carotenoids, safety and
occupational health indices

CAMD, MOO, uncertainty MILP, fuzzy
representation

Molecular Design Under Uncertainty

Liu et al.258 Extractive distillation CAMD Hybrid gene and
SA algorithm

Genetic algorithms
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Table 18 (Continued)

References Application Problem and model class Algorithm Sections

Zhou et al.333 Absorption–desorption process,
separation of acetone from air

CAMPD GA, NLP, CONOPT Stochastic Optimization Approaches

Scheffczyk et al.431 Hybrid extraction–distillation process for
the bio-based platform chemical
g-valerolactone

CAMPD, QM GA Molecular and Process Design

Reactive extraction

Wang and Achenie220 Extractive fermentation CAMPD MINLP, AP/OA Deterministic optimization
approaches in molecular design

Linke and Kokossis320 Extractive fermentation CAMPD SA Stochastic Optimization Approaches
Papadopoulos and
Linke163,322

Extractive fermentation, liquid–liquid
extraction, and extractive distillation

CAMPD, MOO SA Stochastic Optimization Approaches

Cheng and
Wang244,306,307

Extractive fermentation CAMPD MIHDE and
MISQP

Deterministic Optimization
Approaches, Deterministic
optimization approaches in
molecular design

Zhou et al.252 Extractive reaction processes,
liquid-phase reactions

CAMD GA Genetic algorithms

Blanket wash solvents

Ostrovsky et al.222 Blanket wash solvents for lithographic
printing

CAMD IA global
optimization

Deterministic optimization
approaches in molecular design

Achenie and Sinha224 Blanket wash solvents for lithographic
printing, process constraints

Blend and process design IA global
optimization

Deterministic optimization
approaches in molecular design,
Mixture and Blend Design

Chemmangattuvalappil
et al.295

Blanket wash solvents CAMD Property
clustering

Heintz et al.153 Blanket wash mixture substitution,
substitution of chlorinated paraffins,
extraction solvents

CAMbD GA Genetic algorithms, Mixture and
Blend Design

Sinha et al.225 Blanket wash solvents for lithographic
printing

CAMbD IA global
optimization

Deterministic optimization
approaches in molecular design,
Mixture and Blend Design

Metal degreasing
Eden et al.292 VOC recovery from metal degreasing

process
CAMPD Property

clustering
Property Clustering and/or Reverse
Formulations

Eljack et al.348,447 Metal degreasing CAMPD Property
clustering

Property Clustering and/or Reverse
Formulations

Chemmangattuvalappil
et al.445

Metal degreasing CAMD, topological
connectivity indices

Property
clustering

Solvents for Industrial Separations,
Reactive Separations and
Promotion of Reactions

Samudra and
Sahinidis158

Metal degreasing and crystallization
solvents

CAMD, molecular graphs MILP, BARON Deterministic optimization
approaches in molecular design

Solvents for pharmaceutical industry with emphasis on crystallization

Karunanithi et al.227 Cooling and drowning out crystallization
of ibuprofen, process constraints

CAMPD, CAMbD Framework for
MINLP
formulations

Deterministic optimization
approaches in molecular design,
Deterministic Optimization
Approaches, Mixture and Blend
Design

Sheldon et al.234 Solvents for pharmaceutical and
agrochemical industry

CAMD, QM MINLP, OA/ER Deterministic optimization
approaches in molecular design,
QM models in non-reactive
systems

Karunanithi et al.228 Crystallization of carboxylic acids,
process constraints

CAMPD, CAMbD Framework for
MINLP
formulations

Deterministic optimization
approaches in molecular design

Weis and Visco446 Solvents for pharmaceuticals industry Solvent selection, signature
molecular descriptor

Complete
enumeration

Solvents for Industrial Separations,
Reactive Separations and
Promotion of Reactions
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Table 18 (Continued)

References Application Problem and model class Algorithm Sections

Jonuzaj et al.238,
Jonuzaj and
Adjiman240

Liquid–liquid extraction, solubility of
ibuprofen

Blend design MINLP, GDP, HR Deterministic optimization
approaches in molecular design,
Mixture and Blend Design

Austin et al.149 Purification of ibuprofen via cooling
crystallization

CAMbD DFO, MILP,
BARON

Deterministic optimization
approaches in molecular design,
Mixture and Blend Design

Wang and Lakerveld340 Continuous antisolvent crystallization of
paracetamol, PC-SAFT

CAMPD NLP, continuous
representation

Continuous Molecular
Representations

Jonuzaj et al.239 Liquid–liquid extraction, solubility of
ibuprofen

CAMbD MINLP, GDP, BM Mixture and Blend Design

Solvents for promotion of reactions or reactive processes

Gani et al.409,411 Selection of solvents promoting organic
reactions

Incorporation of reactivity
properties in solvent
screening

Knowledge-
based
approach

CAMD in reactive systems

Stanescu and
Achenie,414 Stanescu
et al.415

Kolbe–Schmitt reaction CAMD, QM, reaction ProCAMD, ICAS QM models in reactive systems

Folic et al.389 Menschutkin reaction CAMD, uncertainty,
reaction`

MILP and MINLP
formulations

CAMD in reactive systems

Folic et al.391 Menschutkin reaction CAMPD, uncertainty,
reaction

MILP and MINLP
formulations

CAMD in reactive systems, QM
models in reactive systems

Folic et al.410 Selection of solvents for replacement and
multistep reactions

Incorporation of reactivity
properties in solvent
screening

Knowledge-
based
approach

CAMD in reactive systems

De Vleeschouwer
et al.423,425

Photoacidic compounds for fast proton
transfer in absence of water

QM, reaction Best First Search,
BB-type
algorithm

QM models in reactive systems

Siougkrou377 Menschutkin and Cope elimination
reaction

CAMD, QM, reaction MINLP, BARON,
CONOPT

QM models in reactive systems

Struebing et al.419 Menschutkin reaction solvents QM, reaction MILP, CPLEX QM models in reactive systems
Siougkrou et al.377 GXL solvents, Diels-Alder reaction Blend and process design,

reaction
MINLP, SMIN-a
BB

Deterministic optimization
approaches in molecular design,
Mixture and Blend Design,
Molecular and Process Design

Zhou et al.442 Diels-Alder reaction CAMPD, QM, reaction MINLP Molecular and Process Design
Zhou et al.392 Diels-Alder reaction CAMD, uncertainty, QM,

reaction
MINLP Molecular Design Under

Uncertainty, QM models in
reactive systems

Struebing et al.419 Menschutkin reaction CAMD, QM, reaction MINLP, BARON QM models in reactive systems
Austin et al.149 Meshcutkin reaction, liquid–liquid

extraction
CAMbD, QM, reaction DFO, BARON Mixture and Blend Design, QM

models in reactive systems
Dev369 Design of reactant esters and alcohols

that generate corresponding ester and
alcohol product optimizing a property
index

CAMD, MOO, tracking of
changes in structures
due to reactions,
signature molecular
descriptors

MILP or MINLP Multi-Objective Optimization, QM
models in reactive systems
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developed for the removal of radioactive radium and barium fromwater used in hydraulic fracking, while it is further used by Doshi
et al.287 for the removal of arsenic from water.

Screening of adsorbents for different separations is also performed using optimization by Gounaris et al.449,450 Although it is not
a GC approach, it is an interesting application of optimization-based design of materials. The approach is based on the work of First
et al.,451–453 who propose a systematic method for the characterization of the 3D pore structures of zeolites and metal-organic
frameworks (MOFs) using optimization, geometry, and graph algorithms. The method starts with the crystallographic coordinates
of a structure and automatically identifies the portals, channels, and cages of a zeolite and MOF, describing their geometry and
connectivity. It can be used to calculate pore size distribution, accessible volume, accessible surface area, pore limiting diameter, and
largest cavity diameter. This work is based on the original models of Gounaris et al.,449,450 who mention that the they may be used

for both shape-selective separations and catalysis.
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Table 19t0100 Applications in the design of catalysts, adsorbents, and ionic liquids

References Application Problem and model class Algorithm Sections

Catalysts
Chavali
et al.277

Molybdenum catalyst for epoxidation and
hydroformylation reaction

CAMD, topological
connectivity indices

TS Tabu search,
Catalysts,
Adsorbents and
Ionic Liquids

Lin et al.278 Molybdenum catalyst for an epoxidation reaction CAMD, topological
connectivity indices

TS Tabu search,
Catalysts,
Adsorbents and
Ionic Liquids

Adsorbents
Gounaris
et al.449,454

Zeolites for hydrogen recovery from inorganic
gases and light hydrocarbon streams,
dehydration of gas streams, separation of light
olefin/paraffin, separation of normal paraffins
from branched isomers, separation of fructose
from glucose, separation of fatty acids

Optimization-based
characterization of
zeolites

NLP Catalysts,
Adsorbents and
Ionic Liquids

First
et al.451–453

Zeolites and MOFs for separation of CO2/N2, CO2/
CH4, CO2/H2, O2/N2, propane/propylene,
ethane/ethylene, styrene/ethylbenzene, xylene
isomers

Optimization-based
characterization of
zeolites and MOFs

MILP or NLP Catalysts,
Adsorbents and
Ionic Liquids

Behavides
et al.288,289

Adsorbents for NORM of natural gas fracking
waste

CAMD, fitting of UNIFAC
parameters

ACO Ant colony
optimization,
Catalysts,
Adsorbents and
Ionic Liquids

Doshi et al.287 Adsorbents for arsenic removal from water CAMD, fitting of UNIFAC
parameters

Efficient ACO Ant colony
optimization,
Catalysts,
Adsorbents and
Ionic Liquids

Ionic liquids
Matsuda
et al.454

Ionic liquids for favorable ionic conductivity and
viscosity

Exhaustive search, fitting
of GC-QSPR model for
property prediction

Generate and test Catalysts,
Adsorbents and
Ionic Liquids

McLeese
et al.280

Ionic liquids for use within a hydrofluorocarbon
(refrigerant) gas separation system

CAMD, topological
connectivity indices

TS Tabu search

Chavez-Islas
et al.455

Ionic liquids as solvents for bio-ethanol
recuperation

CAMPD MINLP, BARON, SBB, CONOPT Catalysts,
Adsorbents and
Ionic Liquids

Roughton
et al.310

Ionic liquids as azeotropic distillation solvents CAMPD MILP Deterministic
Optimization
Approaches

Karunanithi
and
Mehrkesh456

Ionic liquids for high electrical conductivity and
for toluene–heptane separation

CAMD Enumeration and gradual reduction
of initial set based on constraints,
GA used to solve the problem and
compare results

Catalysts,
Adsorbents and
Ionic Liquids

Hada et al.299 Ionic liquid design as EBS CAMD, QM, latent
property GC models

Property clustering, enumeration of
all candidates

QM models in
non-reactive
systems

Peng et al.428 Ionic liquids for separation of cyclohexane from
benzene

CAMD, QM MINLP QM models in
non-reactive
systems

Zhang et al.429 Ionic liquid design for separation of benzene from
cyclohexane and deep desulfurization from
gasoline

CAMD, QM Mixed SA-GA algorithm QM models in
non-reactive
systems

Zhao et al.432 Ionic liquids, separation of C2H2/C2H4 Screening of ionic liquids
database, QM

Gradual reduction of initial set of
candidates based on constraints

QM models in
non-reactive
systems

Song et al.444 Ionic liquids for extractive desulfurization of fuel
oils

Enumeration of
structures and process
simulation, QM

Generate and test Molecular and
Process Design
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Table 20t0105 Contributions in materials and process design for CO2 capture

References Application Problem and model class Algorithm Sections

Solvents for physical separation

Gani et al.187 Physical absorption CAMD Generate and test Generate and Test Approaches
Bardow et al.175 Physical absorption CAMPD, PC-SAFT NLP, continuous

molecular
representation

Continuous Molecular
Representations

Stavrou et al.334 Physical absorption CAMPD, PC-SAFT NLP, continuous
molecular
representation

Continuous Molecular
Representations

Qadir et al.329 Pre-combustion capture,
physical absorption

CAMPD, pure solvent and blend design,
PPC-SAFT

GA, internal SQP for
continuous
parameters

Stochastic Optimization
Approaches

Burger et al.237 Physical absorption CAMPD, MOO, GC SAFT-g-Mie MINLP, OA/ER/AP,
sandwiching
algorithm

Deterministic optimization
approaches in molecular
design, Deterministic
Optimization Approaches,
Multi-Objective Optimization

Lampe et al.336 Physical absorption CAMPD, GPC-SAFT NLP, continuous
molecular
representation

Continuous Molecular
Representations

Chong et al.457 Ionic liquids, physical
absorption

CAMD MINLP Materials for CO2 Capture

Farahipour et al.427 Ionic liquids, physical
absorption

Screening of database, QM Gradual reduction of
initial set of
candidates based
on constraints

QM models in non-reactive
systems

Liu et al.443 Ionic liquids, physical
absorption

Simulation of different ionic liquids in
single and multistage flash flow
sheets, QM

Enumeration-based
solvent selection

Molecular and Process Design

Gopinath et al.,241

Gopinath179
Physical absorption CAMPD, GC SAFT-g-Mie MINLP, modified OA Deterministic optimization

approaches in molecular
design, Deterministic
Optimization Approaches

Chong et al.378,379 Ionic liquids and mixtures,
physical absorption

CAMbD Property clustering Mixture and Blend Design

Chong et al.458 Ionic liquids, physical
absorption in bioenergy
carbon capture and
storage system

CAMD MINLP, disjunctive
programming

Materials for CO2 Capture

Zhao et al.432 Ionic liquids, separation of
CO2/CH4

Screening of ionic liquids database, QM Gradual reduction of
initial set of
candidates based
on constraints

QM models in non-reactive
systems

Peng et al.428 Ionic liquids, physical
absorption

CAMD, QM MINLP, BB QM models in non-reactive
systems

Valencia-Marquez
et al.376

Ionic liquids, physical
absorption

CAMPD, SOO, and MOO MINLP, SBB Multi-Objective Optimization

Solvents for chemical separation
Mac Dowell at al.343 Chemical absorption,

chemical and phase
equilibrium

Blend and process design, SAFT-VR NLP, continuous
molecular
representation

Continuous Molecular
Representations

Pereira et al.149,438 Chemical absorption,
chemical and phase
equilibrium

CAMPD, CAMbD, SAFT-VR NLP, continuous
molecular
representation

Continuous Molecular
Representations

Salazar et al.439 Chemical absorption,
phase equilibrium

CAMPD, UNIFAC, and eNRTL N/A Molecular and Process Design

Chemmangattuvalapil
and Eden297

Chemical absorption,
nonreactive pure
component properties as
design criteria

CAMD within process constraints,
signature molecular descriptors

Property clustering,
MILP

Materials for CO2 Capture
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Table 20 (Continued)

References Application Problem and model class Algorithm Sections

Ng et al.359 Chemical absorption,
nonreactive pure
component properties as
design criteria

CAMD, MOO, signature molecular
descriptors

MILP, fuzzy
representation

Multi-Objective Optimization

Papadokonstantakis
et al.325

Chemical absorption,
chemical and phase
equilibrium

CAMPD, MOO, SAFT-VR, cradle-to-gate
and gate-to-gate sustainability
assessment

SA, NLP Molecular and Process Design

Papadopoulos et al.394 Chemical absorption,
chemical and phase
equilibrium

CAMD, MOO, uncertainty, GC SAFT-g-SW,
cradle-to-gate sustainability
assessment

SA Molecular Design Under
Uncertainty

Ten et al.364,366 Chemical absorption,
nonreactive pure
component properties as
design criteria, health
and safety indices

CAMD, MOO MILP, fuzzy
representation,
disjunctive
programming

Multi-Objective Optimization

Zarogiannis et al.165,
Papadopoulos
et al.164

Chemical absorption, no
reactivity properties

MOO, blend design, uncertainty Complete
enumeration

Mixture and Blend Design

Limleamthong
et al.360

Chemical absorption, no
reactivity properties

MOO Linear Programming,
DEA

Multi-Objective Optimization

Ahmad et al.433 Chemical absorption CAMD, QM, reaction mechanisms ProCAMD, ICAS QM models in non-reactive
systems

Adsorbents for PSA/VSA
Hasan et al.459 Zeolites for PSA/VSA Screening of zeolites based on geometry,

grand canonical Monte Carlo for
determination of equilibrium and
kinetics in selected zeolites,
optimization-based process design
using surrogate model

NLP Materials for CO2 Capture

First et al.460 Zeolites for PSA Screening of zeolites based on geometry,
grand canonical Monte Carlo for
determination of equilibrium and
kinetics in selected zeolites,
optimization-based process design
using surrogate model

MILP for minimum
energy pathway
through zeolite,
NLP for process
optimization

Materials for CO2 Capture
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Ionic liquids are organic salts usually consisted of a bulky organic cation and an organic or inorganic anion and with melting
points near room temperature. They are characterized by extremely low vapor pressures, wide liquid ranges, nonflammability,
thermal stability, tunable polarity, good electrolytic and solvation properties, and high viscosity. Such properties are often

considered as performance indices in the design of ionic liquids, together with solubility.
Materials for CO2 Capture

The design of CO2 capture materials using CAMD approaches involves mainly research into the identification of solvents that are
able to reduce capital and operating costs. Table 20 summarizes the main developments. Zeolites have also been considered
through optimization-based material screening and process design approaches. In the area of solvent-based separations, CO2

capture processes which are based on physical absorption often include a pressurized absorption column which is followed by a
flash process for solvent regeneration. Being an absorption process, the key requirement is to identify solvents that exhibit high CO2

solubility. Notable works in this area include those using different versions of SAFT to model the phase equilibrium, as well as the
use of GC or continuous molecular representation approaches for solvent and process design (see “Methodologies for Solution of
CAMPD Problems” section). Ionic liquids have also been proposed as potential CO2 capture solvents in this case. These are
considered as EBSs, mainly due to extremely low vapor pressure. However, they often exhibit high viscosity hence it is important to
use it in the minimization criteria during solvent design.

Chemical absorption processes include mainly amine-based solvents which react with CO2 in packed-bed absorption columns
and the solvent is then regenerated thermally in desorption columns. The process is energy intensive, because the regeneration takes

place at approximately 120�C, while the amine solvents have significant health, safety, and environmental impacts. The
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identification through CAMD approaches of solvents which address these shortcomings is difficult, because both the solvent CO2

solubility and reaction kinetics need to be accounted for during solvent design. To date, there are different approaches addressing
the design of CO2 capture solvents through chemical absorption. One approach includes contributions which employ pure
component properties as design criteria focusing on properties such as solvent heat of vaporization, molar volume, density, and
viscosity (e.g., Ten et al.364). While these are important properties, solvent CO2 solubility and reaction kinetics should also be
considered. An important feature of such works is the consideration of health-related properties such as soil-sorption coefficient and
toxic limit concentration Chemmangattuvalappil and Eden297 or of a more inclusive evaluation of multiple health and safety
indices Ten et al.364

Different approaches consider equilibrium calculations to determine the CO2 solubility in solvent–water mixtures. Such
approaches include works by Salazar et al.,439 Mac Dowell et al.,343 Pereira et al.,152,438 Papadokonstantakis et al.,325 and
Papadopoulos et al.394 reviewed in “Molecular and Process Design” section. An important feature of Papadokonstantakis et al.325

and Papadopoulos et al.394 is that CAMD is first implemented considering numerous pure component properties such as solvent
CO2 solubility, solvent basicity (which is a measure of reactivity), heat capacity, density and viscosity, and surface tension, together
with a complete cradle-to-gate life cycle assessment and environmental, health, and safety hazards analysis. A set of solvents that
exhibit desirable performance in these properties is then evaluated using GC SAFT-g-SW EoS which allows the calculation of the
equilibrium CO2 solubility. Mac Dowell et al.343 and Pereira et al.152,438 also use SAFT-based implementations, while they also
consider process together with solvent design. Papadokonstantakis et al.325 consider process design and gate-to-gate sustainability
process assessment for selected solvents.

In a different line of work, Hasan et al.459 and First et al.460 propose a hierarchical screening of zeolites as adsorbents for CO2

capture using pressure swing adsorption or vacuum swing adsorption (PSA/VSA). The method is not based on GC but falls within
the CAMPD philosophy of evaluating materials, considering optimization-based process design. Potential zeolites based on their
pore sizes are first identified. Next, shape, size, and adsorption selectivity are calculated to shortlist few options. Grand canonical
Monte Carlo is used for the derivation of equilibrium and kinetic relationships. A detailed simulation and sampling-based
process optimization technique is used to optimize a four-step PSA/VSA process, supported by the derivation of a Kriging-based

model.
Heat Exchange Fluids

The design of heat exchange fluids involves applications in refrigeration cycles, heat pumps, and ORC (Table 21). All these processes
involve pressure change operations with the fluid operating at two pressure levels, for basic cycle configurations. It is therefore
important to identify fluids that operate at low pressures, but vacuum should be avoided if possible as it generally increases the
capital and operating costs. At the desired pressure levels, the fluid should be able to extract as much heat as possible from the heat
source. In the case of ORC, the fluid should enhance power generation through a turbine, where the formation of liquid should be
avoided. The use of mixtures instead of pure fluids facilitates heat extraction as they provide a better match of the temperature
profile of the heat source. This is because mixtures exhibit variable phase-change temperature, as opposed to the constant phase-
change temperature of pure fluids, hence pinches are avoided. Matching of the heat source temperature profile can be achieved
through combined selection of appropriate fluids and design of multipressure systems or tightly integrated heat exchange
networks.318 With respect to fluid properties, heat of vaporization, heat capacity, thermal conductivity, and viscosity are important
properties. Flammability, toxicity, global warming, and ozone depletion potentials have also been considered in published
research. Noteworthy contributions further include the use of SAFT-based models. A review of working fluid, process design

control, and integration of ORC is available in Linke et al.177
Polymers

The design of polymers includes the identification of the repeat unit structure of a polymer that satisfies a set of desired macroscopic
properties.251,464 This is a typical CAMD problem which may use GC methods such as the ones proposed by Van Krevelen and Te
Nijenhuis.17 There are currently numerous property classes that can be predicted by GCmethods including volumetric, calorimetric,
cohesive properties and solubility, transition temperatures, interfacial energy properties, optical, electrical, magnetic, mechanical,
acoustic properties, chemical stability, and various transport properties, to name but a few. Table 22 shows the main features of the

reported applications.
Bio-Based Fuels and Chemicals

The contributions included in Table 23 involve the design of bio-based fuels and other chemicals as well as design of potential
production pathways. In the area of biofuels, there are several challenges that may be overcome through appropriate design of fuel
mixtures and blends. As noted in Hada et al.,298 the oxidative stability and low-temperature operability are key issues, as they have
an inverse relationship; structural modifications that improve oxidative stability adversely affect low-temperature operability and
vice versa. Fuel additives are used to address such issues, but the proposed formulations need to cover biofuels originating from

different feedstocks in order to meet quality regulations. To this end, properties which are important for the design of fuel additives
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Table 21t0110 Contributions in CAMD for heat exchange fluids in refrigeration, heat pump, and ORC processes

References Application
Problem and model
class Algorithm Sections

Joback184 Refrigerants CAMD Generate and test Generate and Test Approaches
Gani et al.187 Refrigerants CAMD Generate and test Generate and Test Approaches
Duvedi and
Achenie217

Refrigeration CAMPD MINLP, OA/AP Deterministic Optimization
Approaches

Churi and
Achenie219

Refrigeration Blend design, process
constraints

MINLP, OA/AP Deterministic optimization
approaches in molecular design

Duvedi and
Achenie218

Refrigeration Blend design, process
constraints

MINLP, OA/AP Deterministic Optimization
Approaches, Mixture and Blend
Design

Marcoulaki and
Kokossis268

Refrigerants CAMD SA Simulated annealing, Stochastic
Optimization Approaches

Lee et al.380 Refrigeration Blend and process
design

Composite curves and NLP Mixture and Blend Design

Sahinidis
et al.242

Refrigerants CAMD Branch-and-reduce global optimization Deterministic optimization
approaches in molecular design

Lehmann and
Maranas172

Refrigerants QM GA Genetic algorithms, QM models in
non-reactive systems

Solvason
et al.381

Refrigerants CAMbD Property clustering, complete enumeration Mixture and Blend Design

Samudra and
Sahinidis158

Refrigerants CAMD, molecular
graphs

MILP, BARON, XPRESS Deterministic optimization
approaches in molecular design

Cignitti et al.317 Refrigeration CAMPD, CAMbD MINLP, SBB Deterministic Optimization
Approaches

Ourique and
Telles271

Heat pump CAMD, molecular
graphs

SA Simulated annealing

Papadopoulos
et al.323

ORC CAMPD, ΜΟΟ SA Heat Exchange Fluids

Papadopoulos
et al.324

ORC CAMPD, ΜΟΟ,
CAMbD

SA Stochastic Optimization Approaches,
Multi-Objective Optimization,
Mixture and Blend Design,
Molecular Design Under
Uncertainty

Lampe et al.335 ORC CAMPD, PC-SAFT NLP, continuous molecular representation Continuous Molecular
Representations

Roskosch and
Atakan176,341

ORC and heat pump CAMPD NLP, continuous molecular representation Continuous Molecular
Representations

Lampe et al.335 ORC CAMPD, GPC-SAFT NLP, continuous molecular representation Continuous Molecular
Representations

Molina-Thierry
and Flores-
Tlacuahuac312

ORC Blend and process
design

NLP Deterministic Optimization
Approaches, Mixture and Blend
Design

Palma-Flores
et al.311

ORC CAMPD NLP Deterministic Optimization
Approaches

Mavrou et al.382 ORC Blend and process
design, MOO

Complete enumeration Mixture and Blend Design

Mavrou et al.383 ORC Blend and process
design, MOO,
uncertainty

Complete enumeration Mixture and Blend Design

Frutiger
et al.399,402,
Frutiger342

ORC and heat pump CAMPD, uncertainty See “Molecular Design Under Uncertainty”
section

Continuous Molecular
Representations, Molecular Design
Under Uncertainty

Thierry et al.319 ORC Blend and process
design

MINLP, GDP Deterministic Optimization
Approaches

Schilling
et al.338,339

ORC CAMPD, ΜΟΟ, GPC-
SAFT

MINLP, OA/ER, BARON, DICOPT, SNOPT Continuous Molecular
Representations, Multi-Objective
Optimization

Santos-
Rodriguez
et al.313

ORC Blend and process
design, uncertainty

Deterministic stochastic programming,
MINLP, CONOPT

Deterministic Optimization
Approaches, Mixture and Blend
Design, Molecular Design Under
Uncertainty

(Continued )
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Table 21 (Continued)

References Application
Problem and model
class Algorithm Sections

Cignitti et al.313 ORC CAMPD Simultaneous approach: MINLP,
LINDOGlobal464. Decomposed approach:
MILP with BARON and NLP with CONOPT

Deterministic Optimization
Approaches

White et al.314 ORC CAMPD, GC SAFT-g-
Mie

MINLP, OA/ER/AP Deterministic Optimization
Approaches

Schwobel
et al.461

ORC Screening working
fluids and ORC
simulations, QM,
COSMO-RS

Complete enumeration of 75 million fluids Heat Exchange Fluids

Andres-
Martınez
et al.404

ORC CAMD, uncertainty MINLP Molecular Design Under Uncertainty

Stijepovic
et al.318,462

ORC Selection of molecules
and process design

MINLP, BARON Deterministic Optimization
Approaches

Karunanithi and
Mehrkesh456

Ionic liquids for thermal
energy storage (high
thermal conductivity)

CAMD Enumeration and gradual reduction of initial
set based on constraints, GA used to solve
the problem and compare results

Heat Exchange Fluids

Mehrkesh and
Karunanithi463

Ionic liquids for thermal
energy storage (high
thermal storage
density)

CAMD GA Heat Exchange Fluids
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include vapor pressure, octane rating and heating value, cetane number, viscosity and density, flash point, lethal concentration,
Gibbs energy of mixing, oxygen content, etc. Such properties are associated with the ability of the fuel to be burned, engine
efficiency, efficient fuel flow, safety and health, stability, and environmental impacts.387 Additives for lubricants are also important,
with associated properties discussed in Yunus et al.387 Similar properties are used in approaches where biofuels or other chemicals
are designed using CAMD and then the feasibility of their production is evaluated. The latter is based on the use of platform
chemicals and either the evaluation of synthesis of the designed products through reaction network analysis or the evaluation of

their production through process design approaches.
Formulated Products and Other Chemicals

This section investigates the design of formulated products469 as well as other chemicals which may be the active ingredients in
formulated products and pertain to pharmaceuticals, agricultural, and cosmetics industry. Table 24 summarizes the main features
of the reported approaches and applications. Formulated products are mainly complex blends, comprising several different
components which result in desirable functionality and performance of the final product. For example, Conte et al.191 classify
liquid product components into active ingredients which determine the function of the product (e.g., the ingredient that repels
insects in the corresponding lotion), additives used to enhance the end-use properties, and the solvent which is used to dissolve
the active ingredient and additives to enable easy and dependable use. Martin and Martinez308 provide an indicative example of
the different components which may be found in detergents, including surfactants, builders, enzymes, polymers, bleach,
softeners, stabilizers, preservatives, fragrances, and colorants. The need of molecular design approaches is quite clear, but these
are just part of the product design problem. Fung et al.309 provide an overview of all the complex decision-making required from
the selection of ingredients all the way to product commercialization. Other important applications of molecular design
approaches include the design of active ingredients for human medication, of chemicals for agricultural applications, food

enhancers, fragrances, etc.
Future Outlook and Further Reading

The presented work highlights all major classes of molecular design technologies and approaches, showing how the original
concept evolved toward various different directions. The integration of process decisions and equipment models into molecular

design is a mature, but still very active research field. The incorporation of rigorous QM-based models in molecular design is an
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Table 22t0115 Design of polymers

References Application
Problem and model
class Algorithm Sections

Derringer and Markham186 Polymer repeat units CAMD Generate and test Generate and Test Approaches
Venkatasubramanian
et al.,253,264 Patkar and
Venkatasubramanian251

Various polymers CAMD GA Genetic algorithms

Vaidyanathan and
El-Halwagi229

Design of polycarbonate of
bisphenol A

CAMbD MINLP, IA global
optimization

Deterministic optimization approaches
in molecular design, Mixture and
Blend Design

Constantinou et al.188 Polymer design and foam blowing
and cleaning agents for textiles

CAMD Generate and test Generate and Test Approaches

Maranas215 Polymer repeat units CAMD MINLP to MILP,
GAMS/OSL

Deterministic optimization approaches
in molecular design

Maranas168 Polymer repeat units CAMD, uncertainty MINLP, AP/OA,
DICOPT

Deterministic optimization approaches
in molecular design, Molecular Design
Under Uncertainty

Vaidyanathan and
El-Halwagi465

Fiber re-enforced polymer
composites, design of polymer
forming the matrix of composite

CAMD MINLP, GINO Deterministic optimization approaches
in molecular design, Mixture and
Blend Design

Camarda and Maranas216 Polymer repeat units CAMD, topological
indices

MINLP, AP/OA,
DICOPT

Deterministic optimization approaches
in molecular design

Satyanarayana et al.405,406 Polymers as coatings and synthetic
fibers

CAMD, Grid/parallel
computing,
connectivity indices

Harper and
Gani190

approach

Exploitation of Advanced Computing
Infrastructures

Eslick et al.279 Cross-linked polymer networks CAMD TS Tabu search
Solvason et al.386 Polymer blend of spun yarn for marine

application
Blend design,
topological
connectivity indices

Property
clustering,
complete
enumeration

Mixture and Blend Design

Satyanarayana et al.426 Polymers as hermetic stoppers CAMD, molecular
dynamics,
connectivity indices

Harper and
Gani190

approach

QM models in non-reactive systems

Pavurala and Achenie466 Polymers for oral drug delivery CAMD MINLP, OA Polymers
Zhang et al.232 Polymer repeat units CAMD General MILP/

MINLP
formulation

Deterministic optimization approaches
in molecular design

Abedin et al.281 Water compatible visible light
photosensitizers for dental adhesive

CAMD, topological
connectivity indices

TS Tabu search

Mukherjee et al.286 Polymeric adsorbents for metal ion
removal from water

CAMD, fitting of
UNIFAC parameters

EACO Ant Colony Optimization

Hada et al.300 Development of thermoplastic from
the mixing of starches, lactic acids
and additives

Blend design, latent
variable models

Property
clustering

Property Clustering Approaches, Mixture
and Blend Design
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emerging area of research, with very intense interest in applications including reactive systems. The use of rigorous molecular
models involves activities observed in several applications which have not yet been addressed using CAMD-based methodol-
ogies. For example, the combination of optimization algorithms with rigorous molecular models is also reported in the active
domain of CADD.263 However, such activities lack the systematic approaches described here, hence there is a great scope to
transfer and further develop CAMD methodologies in domains such as CADD. Furthermore, the use of EoS other than cubic is
also emerging rapidly in CAMD. Such EoS enable molecular design for challenging activities, including applications that involve
multiphase equilibria, high pressures, and systems, that exhibit electrolytic behavior or include reactions. In all these cases,
the development of advanced optimization approaches is needed in order to efficiently address the mathematical challenges that
result from very nonideal behaviors and high combinatorial complexity. The development and utilization of surrogate
models also appears as an emerging approach to address computational challenges. The Kriging model has been reported as a
surrogate model type in few applications,159,474 while latent variable methods such as principal component analysis have been
used (e.g., Hada et al.299,300). Recent developments also include technologies such as machine learning for high-throughput
screening of chemicals475 and molecular design.472 Additionally, efforts to exploit advanced computational infrastructures and

information technologies are needed. Finally, the design of complex products is also an emerging area. New and efficient
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Table 23t0120 Applications in the design of bio-based fuels and chemicals

References Application
Problem and model
class Algorithms Sections

Design of bio-based fuels and chemicals

Camarda and
Sunderesan467

Fuel additives and detergents, textile
surfactants as soybean derivatives

CAMD, topological
molecular connectivity
indices

MILP Bio-Based Fuels and Chemicals

Hada et al.298 Biofuel additives CAMbD, latent property
GC models

Property
clustering

Mixture and Blend Design

Yunus et al.387 Additives for fuels and lubricants Blend design NLP Mixture and Blend Design
Perdomo et al.468 Optimum composition of fatty acid

methyl esters (FAMEs)
Blend design, SAFT-g GA Bio-Based Fuels and Chemicals

Woo et al.301 Design of biofuel additives Blend design, statistical
model development

Mixed-integer
problem
formulation

Property Clustering Approaches

Design of bio-based fuels and chemicals with production pathways

Hechinger et al.,416

Dahmen and
Marquardt418

Biorenewable fuel and blend
candidates and identification of
production pathways

CAMD, RNFA ProCAMD, ICAS QM models in reactive systems

Ng et al.353 Design of biochemicals and
biorefineries to produce them

CAMPD, signature
molecular descriptors

MILP Property Clustering and/or Reverse
Formulations

Ng et al.354 Design of fuel additives from palm-
based biomass and biorefineries
to produce them

CAMPD, MOO, CAMbD,
signature molecular
descriptors

MILP, fuzzy
representation

Property Clustering and/or Reverse
Formulations, Multi-Objective Optimization,
Mixture and Blend Design

Gerbaud et al.413 Identification of molecules from
biorenewable feedstocks and of
production pathways

CAMD, CAOS approach GA (approach of
Heintz
et al.153)

CAMD in reactive systems
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methods are needed to address the need for considering mixtures of multiple and diverse components and for accounting of a
large number of activities prior to commercialization. This is an area where different molecular design approaches and
technologies can converge into software systems which can cover the entire product design chain, from product identification
to commercialization.

The iCAMD special issue476 includes a large collection of publications with contemporary advances in molecular design.
Martin et al.477 published a collective volume with several different contributions on chemical product design. The volume
includes methodological advances together with important applications. Adjiman and Galindo478 also published a collective
volume on molecular systems engineering which includes contributions regarding the development of property prediction
models as well as molecular design. Austin et al.4 present a structured review of molecular design approaches, with analysis of
property modeling, mathematical optimization, and applications. In the area of product design, Gani and Ng479 present an
inclusive work that identifies challenges in product design, classifies product design by market sector and product type, and
proposes a systematic product design approach. In the area of pharmaceuticals, Papadakis et al.480 present a perspective paper on
pharmaceutical process development where product design approaches are also discussed as part of the entire process. The work
is included in a collective volume by Singh and Yan481 which includes additional contributions regarding product and process
design in pharmaceutical industries. An inclusive framework on pharmaceutical product design is also included in the work of
Gernaey and Gani.482

The computer-aided design of materials for CO2 capture processes is covered in an extensive volume by Papadopoulos and
Seferlis.483 The work includes contributions that cover the entire area of computer-aided CO2 capture systems design, frommaterial
modeling and design, to process modeling, design, control, and integration. Applications are reported for several CO2 capture
technologies, including solvent-based separations, PSA/VSA materials and systems, membrane-based separations, as well as
oxycombustion and calcium looping systems. Finally, in the area of ORC, the review of Linke et al.177 covers developments from

working fluid design, to process design, control, and integration.
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Table 24t0125 Applications in the design of formulated and other chemicals

References Application
Problem and model
class Algorithm Sections

Formulated products

Conte et al.191,192 Formulated products, paint
formulation, insect repellent lotion,
solvents for hair spray

CAMPD, CAMbD Generate and test,
ICAS

Generate and Test Approaches,
Mixture and Blend Design

Martin and Martinez308 Detergents Blend and process
design

MINLP, BARON Deterministic Optimization
Approaches, Mixture and Blend
Design

Mattei et al.193,388 Surfactants for emulsions CAMbD Generate and test Mixture and Blend Design
Ng et al.397 Design of alkyl substituent for

fungicide
CAMD, MOO,
uncertainty,
signature molecular
descriptors

MILP, fuzzy
representation

Molecular Design Under Uncertainty

Zhang et al.232 Surfactant design for UV sunscreen in
emulsion

CAMD General MILP/MINLP
formulation

Deterministic optimization
approaches in molecular design

Martin and Martinez396 Detergents Blend design,
uncertainty

MINLP, BARON Molecular Design Under Uncertainty

Fung et al.309 Die attach adhesive, hand lotion CAMPD MINLP Deterministic Optimization
Approaches

Other chemicals

Joback184 General methodology for drug design
applied to asthma drugs

CAMD Generate and test Generate and Test Approaches

Raman and Maranas10 Substitution of
dialkyldithiolanylidenemalonates
with optimum fungicidal and
insecticidal properties

CAMD, uncertainty,
topological
connectivity indices

MILP, CPLEX, MINLP
for deterministic
problem, DICOPT

Deterministic optimization
approaches in molecular design,
Molecular Design Under Uncertainty

Buxton et al.407,408 Derivation of alternative reaction
pathways for pesticide components

CAMD, reaction
pathway

Optimization-based
CAMD with
knowledge-based
approach

CAMD in reactive systems

Friedler et al.223 Polyhalogenated biphenyls, flavor
constituents in perfumes

CAMD MINLP, BB Deterministic optimization
approaches in molecular design

Siddhaye et al.470 Design of alcohol related to
bloodstream uptake of orally
delivered drugs

CAMD, topological
connectivity indices

MILP, GAMS/OSL Formulated Products and Other
Chemicals

Siddhaye et al.471 Novel penicillin derivative CAMD, topological
connectivity indices

MILP, GAMS/OSL Formulated Products and Other
Chemicals

Chemmangattuvalappil
et al.296

Design of alkyl substituent for
fungicide

CAMD, signature
molecular
descriptors

Property clustering Property Clustering Approaches

Zhang et al.472 Design of fragrance molecules as
shampoo additives and insect
repellent sprays

CAMD, machine
learning, GC

MINLP, GAMS,
OptCAMD,
ProCAMD473

Formulated Products and Other
Chemicals
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