Τρέχοντα Έργα

ΕΡΕΥΝΗΤΙΚΑ ΕΡΓΑ

 

ΠΡΟΓΡΑΜΜΑΤΑ ΠΑΡΟΧΗΣ ΥΠΗΡΕΣΙΩΝ

 

 

ΕΡΕΥΝΗΤΙΚΑ ΕΡΓΑ

Title:

Έξυπνα Εργοστάσια & Καινοτόμες Τεχνολογίες για τη Βελτίωση του Εργασιακού Περιβάλλοντος

Το έργο SatisFactory (A collaborative and augmented-enabled ecosystem for increasing satisfaction and working experience in smart factory environments) είναι ένα νέο τριετές ερευνητικό έργο χρηματοδοτούμενο από την Ευρωπαϊκή Ένωση και ξεκινάει τον Ιανουάριο του 2015, με συντονιστή το Ινστιτούτο Τεχνολογιών Πληροφορικής και Επικοινωνιών (ΙΠΤΗΛ) του Εθνικού Κέντρου Έρευνας και Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ). Το έργο φιλοδοξεί να αναπτύξει καινοτόμες τεχνικές μετάδοσης της γνώσης/εμπειρίας, καθώς και φορητές συσκευές (π.χ. γυαλιά) για την ενίσχυση της καινοτομίας, της παραγωγικότητας και τον προγραμματισμό των εργασιών στις γραμμές παραγωγής των εργοστασίων, εμπλουτίζοντας παράλληλα την ευελιξία τους, μέσω της υποστήριξης των αλληλεπιδράσεων των εργαζομένων.
Ο Δρ. Δημήτριος Τζοβάρας, διευθυντής του ΙΠΤΗΛ/ΕΚΕΤΑ και συντονιστής του έργου SatisFactory επισημαίνει: «Η βιομηχανία είναι ένα ζωτικής σημασίας συστατικό της κοινωνίας μας, αλλά θα μπορεί να αξιοποιεί πλήρως τις δυνατότητές της, μόνο αν εναρμονιστεί με τις συνεχιζόμενες αλλαγές στην παγκόσμια οικονομία και την τεχνολογία. Υπάρχει μια ραγδαία ανάπτυξη της τεχνολογίας των πληροφοριών προς τη βελτίωση της λειτουργίας των εργοστασίων. Οι επιχειρήσεις θα πρέπει να ενσωματώσουν ανθρωποκεντρικές τεχνολογίες, αφενός για να αυξήσουν την ανταγωνιστικότητά τους και από την άλλη για να προσφέρουν ένα καλύτερο, ελκυστικό και ασφαλέστερο εργασιακό περιβάλλον.»
Το SatisFactory έχει ως όραμα το εργοστάσιο του μέλλοντος να αποτελεί ένα ευχάριστο χώρο για τους εργαζομένους. Η βελτίωση του εργασιακού περιβάλλοντος θα καταστήσει τη βιομηχανική απασχόληση πιο ελκυστική για τους εργαζόμενους – κυρίως για τους νέους – ενώ θα ενισχύσει την ποιότητα στο εργασιακό τους περιβάλλον. Το SatisFactory θα συνεισφέρει προς την κατεύθυνση των ελκυστικών εργοστασίων του μέλλοντος, χρησιμοποιώντας βασικές τεχνολογίες επαυξημένης πραγματικότητας, φορητές συσκευές (γυαλιά, κ.λπ.) καθώς και προσαρμοσμένες πλατφόρμες κοινωνικής επικοινωνίας. Αυτές σε συνδυασμό με έμπειρο σχεδιασμό και τεχνικές παιγνίων (gamification) θα συνεισφέρουν στην αποτελεσματικότερη μεταφορά γνώσης και εμπειριών μεταξύ των εργαζομένων.
Πιο συγκεκριμένα, η κοινοπραξία του έργου φιλοδοξεί να αναπτύξει καινοτόμες λύσεις, οι οποίες μεταξύ άλλων είναι:

  • Τεχνικές παιγνίων για την αύξηση της ελκυστικότητας του εργασιακού περιβάλλοντος στους νέους εργαζομένους
  • Σύστημα ανταλλαγής γνώσεων σε πραγματικό χρόνο για την εκπαίδευση των εργαζομένων
  • Τεχνολογίες επαυξημένης πραγματικότητας για υπηρεσίες διαδραστικής εκπαίδευσης
  • Τεχνικές λήψης αποφάσεων με σκοπό την αύξηση της παραγωγικότητας και την άνεση των εργαζομένων
  • Προσαρμοζόμενες και επαυξημένης επικοινωνίας διεπαφές για την συνεργασία και το διαμοιρασμό γνώσεων σε πραγματικό χρόνο.
    • Ημερομηνία Έναρξης : 01/01/2015, Ολοκλήρωση: 31/12/2017
    • Επιστημονικός Υπεύθυνος : Δρ. Σπυρίδων Βουτετάκης


¤ Περισσότερες πληροφορίες μπορείτε να βρείτε στο επίσημο site: http://www.satisfactory-project.eu

 

Title:

Development of a closed loop regenerative high temperature pem fuel cell system

The use of fuel cells in aerospace applications is, up to date, very limited, future missions, however, will see more involvement of fuel cells in space, and this will include European Space Agency (ESA) activities as well. Reversible or Regenerative Fuel Cells (RFCS) have already been considered as potential energy storage devices for several space mission scenarios, even for Earth satellite missions. Two fields of application have been identified as suitable for the potential use of RFCS: the field of telecommunication for the replacement of batteries, and planetary exploration where RFCS would fill the gap between batteries and nuclear power sources. Current RFCS technology separates the electrolyzer cell and the fuel cell. A complete, closed-loop system based on regenerative fuel cells combined, for instance, with solar panels, would provide autonomous electrical power supply on-demand, which is of great interest and importance for space applications. Such systems are stand-alone systems, where the renewable energy source powers the system.
The objective of this activity is the development of a Regenerative High Temperature PEM Fuel Cell Stack combined with a High Pressure PEM Water Electrolysis System for space applications.
The objectives of the activity are:

  • Evaluation and testing of materials for both High Temperature PEM Fuel Cell (HTPEMFC) and High Pressure PEM Electrolyser (HPPEMELY) with emphasis on long life stability and performance.
  • Design both a minimum 1 kW HTPEMFC and HPPEMELY stacks for use with hydrogen and oxygen intended for closed loop operation.
  • Design a closed loop Regenerative -PEMFC system.
  • Manufacture a compact closed loop Regenerative-PEMFC system elegant breadboard.
  • The compact closed loop 1 kW Regenerative-PEMFC system shall be life tested according to a profile given by the European Space Agency.
  • Construction of a 3 kW HTPEMFC and a 1.5 kW HPPEMELY stacks. A 3 kW system will allow accurate estimation of system weight and thermal / water management strongly influencing the efficiency of the system.
  • Evaluation of a performance and efficiency of a system downscaled to 300W.
    • Starting Date : 14/03/2014, Finish : 13/03/2017
    • CPERI Budget : 244.529,00 €
    • Scientific coordinator : Dr. Balomenou Stella

 

Title:

REGENERATIVE FUEL CELLS FOR MARS EXPLORATION

This activity focuses on a regenerative solid oxide fuel cell system, RSOFCS, that use carbon dioxide (CO2) as main medium. CO2 is available directly in the Martian atmosphere. These cells when charging absorb electric energy and electrolyse CO2 into carbon monoxide (CO) and oxygen (O2). These two reactant gasses are then stored. When the cells discharge, CO and O2 are recombined back into CO2 with production of electric energy. These cells, which operate at high temperature, are fully reversible (i.e. the cell works both as electrolyser and as fuel cell) unlike low temperature cells that have, for reasons of catalysis and efficiency, a dedicated electrolyser and a dedicated fuel cell stack.
The objectives of the activity are to:

  • Design, develop and test a small scale demonstrator of reactant generation (pre-pressurization and electrolysis) and storage system.
  • Design and develop a complete 500 W RSOFC system breadboard with a storage capacity of 10 kWh for use on Mars landers, operated solely from CO2.
  • Test the RSOFC system breadboard according to the test specification given by ESA. The test plan aims not only at verifying the compliance with requirements established early in the activity, but also at characterizing the performance and operational aspects of the cells.
    • Starting Date : 01/09/2013, Finish : 28/02/2015
    • CPERI Budget : 292.500,00 €
    • Scientific coordinator : Dr. Balomenou Stella

 

Title:

Παραγωγή ενεργειακών φορέων από παραπροϊόντα βιομάζας

Το ερευνητικό έργο Glycerol2Energy έχει ως στόχο να διερευνήσει διάφορους πιθανούς τρόπους για την εκμετάλλευση της ακατέργαστης γλυκερίνης, με σκοπό την ανάπτυξη εμπορικά βιώσιμης μεθόδου για την παραγωγή ανανεώσιμων ενεργειακών φορέων, όπως το υδρογόνο, υδρογονάνθρακες και ανώτερες αλκοόλες. Ο κύριος στόχος του έργου Glycerol2Energy είναι να αναπτύξει και να αξιολογήσει σε εργαστηριακή κλίμακα μία καινοτόμο διαδικασία για την παραγωγή των φορέων ανανεώσιμων πηγών ενέργειας, χρησιμοποιώντας ως πρώτη ύλη ακατέργαστη γλυκερίνη που προέρχεται από τις βιομηχανίες βιοντίζελ. Ένα σημαντικό κομμάτι του έργου είναι η διερεύνηση των πιο ενεργών, εκλεκτικών και σταθερών καταλυτικών υλικών για την αναμόρφωση της γλυκερίνης υπό διάφορες συνθήκες αντίδρασης και τύπου αντιδραστήρα, μελετώντας και το βέλτιστο σύστημα καταλύτη / αντιδραστήρα .Ένα άλλο σημαντικό κομμάτι του έργου είναι η διερεύνηση της χρήσης του αερίου σύνθεσης που παράγεται από την αναμόρφωση γλυκερίνης για τη σύνθεση των ανώτερων αλκοολών.

    • Ημερομηνία Έναρξης : 2012, Ολοκλήρωση : 2015
    • Επιστημονικός Υπεύθυνος : Δρ. Σπυρίδων Βουτετάκης

 

Title:

High Specific Energy Lithium Cells for Space Exploration

Li-ion batteries are one of the most successful stories in modern electrochemistry. These batteries, which became a commercial reality about 2 decades ago, are dominating the markets with increasingly wider applications, including space applications. Present challenges are to extend their use to high power and large size applications (e.g. propulsion, EV) and, specifically for space applications, to increase their specific energy density (Wh/kg) and improve their low temperature performance in order to meet the demanding requirements of space missions and man-portable applications. This project focuses on the development of a high energy density Lithium-ion cell capable of operating under low temperature conditions (as low as -40oC) which may be encountered in future exploration missions which do not consider the use of Radioisotope Heater Units. The purpose of this activity is therefore to develop, manufacture and evaluate Lithium-ion prototype cells with a target specific energy of 200Wh/Kg or more, capable of operating under low temperature conditions.
The main objectives of this project are:

  • Review of the existing state-of-the-art electrochemical systems and cells technologies and selection of the most promising electrochemical couple(s) and electrolytes
  • Development of advanced anode materials and testing of three-electrode cells based on the most promising materials
  • Development of prototype cells and evaluation under cycling tests
    • Starting Date : 01/05/2013, Finish : 30/09/2014
    • CPERI Budget : 120.000,00 €
    • Scientific coordinator : Dr. Balomenou Stella

 

Title:

HyPEMRef Development of an innovative, energy efficient and environmentally friendly Power System, operating with hydrogen and fuel cell, for stand-alone refrigeration applications

The primary objective of the project is to design, construct, optimize and field-test a highly innovative, energy efficient and environmentally friendly power production system for stand-alone, out-of-grid refrigeration applications. The device will be able to convert the fuel (propane, LPG) into electrical power with intermediate production of hydrogen, by means of a high-temperature PEM fuel cell, and will supply with the demanded power a refrigerator (Ice Cold Merchandiser), resulting in an autonomous refrigeration unit. The system will be based on novel materials, devices, processes and technologies that have been recently developed by the participating bodies. The integrated unit will be specifically designed to be used mainly in remote, out-of-grid locations, where power production is very highly priced. The proposed process for LPG-to-power conversion presents electrical efficiency greater than 30%, which is more than double compared to that of conventional diesel/gasoline generators that are mainly used in similar applications. Furthermore, the proposed process is characterized by nearly zero emissions of atmospheric pollutants, such as SOx and NOx and by significantly reduced emissions of CO2, and thus of total carbon footprint. The integrated system comprises the following parts:

  • Fuel processor, where the fuel is reformed to a hydrogen-rich gas stream
  • Fuel Cell stack, where the demanded power is produced, via the electrochemical reaction of the on-site produced hydrogen with atmospheric oxygen
  • Power electronics, which store and convert the produced energy to the desired form (230 VAC)
  • Control system, which drives all the sub-units and controls the entire power system
  • Refrigeration unit

After construction of the above system, its optimization with respect to several parameters will take place. A number of 3-5 optimized prototypes will be constructed and installed in selected areas, where field testing under realistic conditions will take place.

  • Starting Date : 10/12/2012, Finish : 09/06/2015
  • CPERI Budget : 70.000,00 €
  • Scientific coordinator : Dr. Tsiplakides Dimitris

 

Title:

T-CELL - Innovative SPFC Architecture based on Triode Operation

The development of Solid Oxide Fuel Cells (SOFCs) operating on hydrocarbon fuels (natural gas, biofuel, LPG) is the key to their short to medium term broad commercialization. The development of direct HC SOFCs still meets lot of challenges and problems arising from the fact that the anode materials operate under severe conditions leading to low activity towards reforming and oxidation reactions, fast deactivation due to carbon formation and instability due to the presence of sulphur compounds. Although research on these issues is intensive, no major technological breakthroughs have been realized so far with respect to robust operation, sufficient lifetime and competitive cost. T-CELL proposes a novel electrochemical approach aiming at tackling these problems by a comprehensive effort to define, explore, characterize, develop and realize a radically new triode approach to SOFC technology together with a novel, advanced architecture for cell and stack design. This advance will be accomplished by means of an integrated approach based both on materials development and on the deployment of an innovative cell design that permits the effective control of electrocatalytic activity under steam or dry reforming conditions. The novelty of the proposed work lies in the pioneering effort to apply Ni-modified materials electrodes of proven advanced tolerance, as anodic electrodes in SOFCs and in the exploitation of the novel triode SOFC concept which introduces a new controllable variable into fuel cell operation. In order to provide a proof-of-concept of the stackability of triode cells, a prototype triode SOFC stack consisting of at least 4 repeating units will be developed and its performance will be evaluated under methane and steam co-feed, in presence of small concentration of sulphur compound. Success of the overall ambitious objectives of this project will result in major progress beyond the current state-of-the-art and will open entirely new perspectives in cell and stack design.

Web: http://www.tcellproject.eu/

  • Starting Date : 1/09/2012, Finish : 31/08/2015
  • CPERI Budget : 714.600,00 €
  • Scientific coordinator : Dr. Tsiplakides Dimitris

 

Title:

ASYSTENI - Ammonia Synthesis from Steam and Nitrogen at Atmospheric Pressure: The Electrochemical Approach (2012-2015, NSRF)

Brief description :

Ammonia synthesis from its elements is considered one of the most important scientific achievements of the 20th century. Ten years ago, an electrochemical alternative to the classical high pressure process, developed in our Laboratory, was reported. In the present proposal, the requirement of ultra high purity Η2 is eliminated: ammonia will be synthesized from steam and nitrogen. The reaction will be studied in proton (H+) and oxygen ion (O2-) conducting solid electrolyte cells at 400-700°C and at atmospheric pressure. In the H+ cell, steam will be electrolyzed at the anode to produce protons and oxygen: H2O > 2 H+ + ½ O2 + 2 e-. Protons will be then transported through the solid electrolyte to the cathode where they will react with nitrogen to produce ammonia: 3 H+ + ½ N2 + 3 e- > NH3. In the O2- cell, H2O and N2 will be fed in together at the cathode, where H2O will be electrolyzed: H2O + 2 e- > O2- + H2 . The produced Η2 will then react with N2 to produce ΝΗ3. Hence, in both cells, the overall reaction can be written as: N2 + 3 Η2O <==> 2 ΝΗ3 + 3/2 O2. The feasibility of these processes has been tested successfully in our Laboratory. Nevertheless, a number of problems that need to be solved in order to scale-up, have been identified. The goal of the present proposal is to propose and explore means to overcome these hurdles and bring this new method into industrial practice.

  • Starting Date : 1/7/2012, Finish : 30/6/2015
  • CPERI Budget : 249.999,31 €
  • Scientific coordinator : Dr. Stoukides Mihalis

 

Title:

H2S PROTON - Hydrogen production from H2S decomposition in high temperature proton conducting solid oxide membrane reactors (2012-2015, BLACK SEA "2007 - 2013")

Brief description :

The proposed research addresses the priority “Hydrogen production from H2S rich Black Sea Water”. The main scope is to develop a micro-structured proton conducting electrochemical membrane reactor/fuel cell that will enable the efficient exploitation of Black Sea’s hydrogen rich energy potential (>1.3 million tons). Such an innovative approach will result to the partial compensation of regional countries energy demand, rendering them as key players in the forthcoming hydrogen economy era. Hydrogen production from H2S in Black Sea consists of the following stages: a) pumping of sea water at ~1000m depth, b) extraction of concentrated H2S/H2O mixture, c) decomposition of H2S to H2 and S. The present proposal will delve in every aspect the decomposition step to form H2 in the most efficient way. The development of H+ conducting ceramic membranes is widely recognized as an important step to broad the application of protonic devices; electrochemical reactors and fuel cells. To this end, a H+ conducting cell is planned to be fabricated and operate in the co-generative mode. The anode electrode will be exposed to the concentrated H2S/H2O extraction and catalyze the decomposition of H2S and H2O to H+, S and O2. In the following, H+ will be transferred through the membrane to cathode where they will be converted either to hydrogen (reactor mode) or to H2O generating at the same time electrical energy (fuel cell mode). Simultaneously, on the anode chamber the generated S will react with O2 and excess H2O to SOX and H2SO4. This advantageous poly-generation approach will enable: i) pure H2 production at cathode from both H2S and H2O, ii) S management with H2SO4 co-generation at anode, iii) high efficiencies towards H2 due to the shift of the equilibrium and the application of the electrochemical promotion concept and iv) flexible operation for the simultaneous production and separation of hydrogen or its direct use for power generation under fuel cell operation.

  • Starting Date : 1/2/2012, Finish : 31/1/2015
  • CPERI Budget : 120.000,00 €
  • Scientific coordinator : Dr. Marnelos George

 

Title:

DISKNET - Distributed knowledge based energy saving networks (2012-2015, FP7 Marie Curie IRSES)

Brief description :

Project DISKNET, plans an innovative scientific exchange in the field of designing and optimising distributed networks for efficient energy supply, management and use. The sustainability in the development in the EU and worldwide depends on a number of interrelated factors, originating from the environment, the economy and the society. Sufficient and secure energy supply at acceptable cost and minimum environmental impact is key to achieving sustainability regarding all these aspects. The current proposal, addresses all the three aspects– environmental, economic and societal, by proposing research and integrated knowledge management for improved efficiency of energy supply, conversion and utilisation. The objective of the proposed project is to stimulate a long term research collaboration between academic organisations from the European Research Area (ERA) (Hungary, Greece and Croatia) and leading academic partners from third countries (Ukraine, Jordan and Morocco), in the area of energy systems engineering and energy supply chains. This will be achieved by undertaking the following joint activities:

  • Implement a well structured mobility programme of researchers through two-way exchanges.
  • Organise a series of training courses, seminars and workshops for researchers both ERA and other countries.
  • Evaluation and assessment of tools, methodologies and approaches for the design, operation, control and optimisation of energy supply chains involving distributed energy generation and polygeneration of energy and other products.
  • Organisation and joint participation in conferences.
  • Joint research involving simulation, design and feasibility studies.
  • Cooperating with governments, energy investors and other research organisations to present the results of the joint support actions.
  • Integrated exchange and management of knowledge using modern information and communication technologies.
    • Starting Date : 1/1/2012, Finish : 31/12/2015
    • CPERI Budget : 125.000,00 €
    • Scientific coordinator : Dr. Spyridon Voutetakis

 

Title:

CoMETHy - Compact Multifuel-Energy To Hydrogen converter (2011-2014, FP7 CP)

Brief description :

CoMETHy aims at developing a compact steam reformer to convert reformable fuels (methane, bioethanol, glycerol, etc.) to pure hydrogen, adaptable to several heat sources (solar, biomass, fossil, refuse derived fuels, etc.) depending on the locally available energy mix. The following systems and components will be developed:

  • a structured open-celled catalyst for the low-temperature (< 550°C) steam reforming processes.
  • a membrane reactor to separate hydrogen from the gas mixture.
  • the use of an intermediate low-cost and environmentally friendly liquid heat transfer fluid (molten nitrates) to supply process heat from a multi fuel system. Reducing reforming temperatures below 550°C by itself will significantly reduce material costs. The process involves heat collection from several energy sources and its storage as sensible heat of a molten salts mixture at 550°C. This molten salt stream provides the process heat to the steam reformer, steam generator, and other units.

The choice of molten salts as heat transfer fluid allows:

    • improved compactness of the reformer;
    • rapid and frequent start-up operations with minor material ageing concerns;
    • improved heat recovery capability from different external sources;
    • coupling with intermittent renewable sources like solar in the medium-long term, using efficient heat storage to provide the renewable heat when required. Methane, either from desulfurized natural gas or biogas, will be considered as a reference feed material to be converted to hydrogen.
      • Starting Date : 1/12/2011, Finish : 30/11/2014
      • CPERI Budget : 270.671,20 €
      • Scientific coordinator : Dr. Spyridon Voutetakis

 

Title:

SustainDiesel - Sustainability Improvement Of Diesel Production Technology (2011-2014, NSRF)

Brief description :

As diesel covers the 1/3 of the transportation energy in Greece, any effort to improve its sustainability is significantly important. Mixing diesel with biodiesel (produced from Fatty Acid Methyl Esters – FAME) was the first attempt to improve diesel sustainability, which however raised numerous considerations as the production of FAME-biodiesel in Greece is not sustainable.
The main premise of this R&D project is broadening of the use of RES for the improvement of diesel sustainability, by promoting the production of a hybrid 2nd generation biodiesel using Renewable Energy Sources. The producing process investigated is based on the co-hydroprocessing of petroleum fractions with waste lipids (cooking oils) and more specifically on the hydrodesulphurization of mixtures of petroleum fractions and waste cooking oil. The sustainability of diesel is further improved by using hydrogen produced from solar energy within the hydroprocessing step. Besides exploring the technological feasibility of the proposed technology, the new hybrid diesel is be evaluated in terms of quality specifications and effectiveness/applicability in conventional diesel engines. Finally, this project is also evaluating the environmental benefits, i.e. Green House Gas (GHG) emissions reduction by incorporating RES for diesel production via the investigated pathway.

Website: www.sustaindiesel.gr

  • Starting Date : 23/3/2011, Finish : 22/3/2014
  • CPERI Budget : 253.847,00 €
  • Scientific coordinator : Dr. Spyridon Voutetakis

 

Title:

ECHOCO2 - Electrochemically promoted CO2 hydrogenation for the production of clean fuels

  • Starting Date : 30/11/2010, Finish : 29/11/2013
  • CPERI Budget : 108.800,00 €
  • Scientific coordinator : Dr. Tsiplakides Dimitris

 

Title:

CAPSOL - Design Technologies for Multi-scale Innovation and Integration in Post-Combustion CO2 Capture: From Molecules to Unit Operations and Integrated Plants. (2011-2014, FP7 CP)

Brief description :

This project adopts a holistic approach to delivering innovation in post-combustion CO2 capture by researching and developing multi-scale computer aided methods and tools that:

  • Support intra-scale innovation within multiple levels, ranging from molecules to integrated plants (i.e. thermodynamic models of solvent-CO2 mixtures, CAMD solvent design tools, conceptual to first-principles tools for simulation, optimization, automatic control and integration).
  • Facilitate efficient inter-scale integration and result in validated and applicable solutions (i.e. advanced decision-making tools to systematically deliver novel solvent and process design options using economic, sustainability and controllability measures from unit operations to plant-wide scales).

The proposed developments are expected to identify optimum solvent-process schemes that bring the costs down to at least €15/tCO2 captured or less. The radically new approach adopted for the design of solvents and process schemes for post-combustion CO2 capture presents significant advantages compared with previous EU funded projects (e.g. CESAR).

  • Starting Date : 1/11/2010, Finish : 31/10/2014
  • CPERI Budget : 498.195,80 €
  • Scientific coordinator : Dr. Seferlis Panagiotis

 

Title:

POWERMOTION - Design and Development of a Hybrid Power Supply System for Vehicles, (2011-2014, NSRF) )

  • Starting Date : 11/2010, Finish : 11/2014
  • CPERI Budget : 582.706,00 €
  • Scientific coordinator : Dr. Spyridon Voutetakis

 

Title:

SUPERMICRO - Optimal Energy Management of Hybrid Autonomous Systems (2011-2014, NSRF)

  • Starting Date : 11/2010, Finish : 11/2014
  • CPERI Budget : 323.814,00 €
  • Scientific coordinator : Dr. Spyridon Voutetakis

 

Title:

JoRIEW - Improving capacity of jordanian research in integraded renewable energy and water supply (2010-2013, FP7 CSA)

Brief description :

The objective of the JoRIEW project is to reinforce the cooperation capacities of Jordanian research centres by promoting closer scientific collaboration with a number of ERA located research centres and universities. The JoRIEW project will help structure and enhance S&T cooperation in areas of common interest, such as research system integration, integrated energy and water planning. development of water supply systems that can be powered by intermittent renewable energies, in particular flexible pumping techniques and reverse osmosis desalination technology, where Joint research efforts could bring common solutions and mutual benefits. It opens a new chapter of scientific cooperation between the EC and Jordan, an important partner in the EU s neighbourhood policy.
Improving Jordanian capacities in research wilt be achieved through following activities:

  • Networking of Jordanian and EU research centres in view of disseminating scientific information, identifying partners and setting up joint research.
  • Developing training modules to build competency and facilitate the Jordanian participation in FP7 regarding energy and water research.
  • Developing the Jordanian research strategy for sustainable and renewable energy and water desalination in order to increase its scope, in particular its regional coverage and to improve its responses to the socio-economic needs of Jordan and other countries in the region JoRIEW project actions aim to enhance international cooperation with Jordan by including S&T capacity building (human resources, research policy, networks of researchers and research institutes) activates.

Project will enable Jordanian researchers to contribute to the solution of local, regional and global problems and to economic and social development. Enhanced research capacity will also encourage researchers to compete interna tionally in terms of scientific excellence and increase their incentives to continue to base their research activities in Jordan.

  • Starting Date : 1/10/2010, Finish : 31/10/2013
  • CPERI Budget : 30.281 €
  • Scientific coordinator : Dr. Spyridon Voutetakis

 

Title:

HT-PEM-ELE - Nano-structured electrodes for water electrolysis in high temperature Polymer Electrolyte Membrane electrolyzers

  • Starting Date : 01/09/2010, Finish : 24/01/2014
  • CPERI Budget : 130.000,00 €
  • Scientific coordinator : Dr. Tsiplakides Dimitris

 

Τίτλος Έργου:

BIOFUELS-2G - Επίδειξη αειφόρου και αποτελεσματικής παραγωγής βιοκαυσίμων 2ης γενιάς και εφαρμογή τους σε αστικό περιβάλλον

Σύντομη περιγραφή του έργου:

Ο κύριος στόχος του έργου είναι η μελέτη, η ανάπτυξη και η υλοποίηση σε πιλοτικό επίπεδο της τεχνολογίας παραγωγή βιοκαυσίμων 2ης γενιάς. Το έργο προωθείται από την σύμπραξη τοπικού δημόσιου και ιδιωτικού χαρακτήρα μεταξύ ενός δήμου, ενός ερευνητικού οργανισμού, ενός πανεπιστημίου με την εκτεταμένη κινητοποίηση τοπικών επιχειρήσεων που θα διαθέσουν την πρώτη ύλη για την παραγωγή βιοκαυσίμων.

Το έργο θα διαμορφώσει μια ολοκληρωμένη προσέγγιση για την υλοποίηση της τεχνολογίας παραγωγής βιοκαυσίμων 2ης γενιάς, με αυξημένη αειφορία (χρήση ανανεώσιμων πηγών ενέργειας), καλύπτοντας όλη την παραγωγική αλυσίδα. Αυτή η προσέγγιση θα εφαρμοστεί στα χαρακτηριστικά της περιοχής της Θεσσαλονίκης, αλλά θα μπορεί να εφαρμοστεί εύκολα και σε άλλες αστικές περιοχές της Ελλάδας αλλά και της Ευρωπαϊκής Ένωσης γενικότερα. Η πιλοτικές εφαρμογές θα προετοιμάσουν το έδαφος για την υλοποίηση της τεχνολογίας σε μεγάλη κλίμακα, που μπορεί να εποπτευθεί από συμπράξεις δημόσιου και ιδιωτικού χαρακτήρα. Το έργο αναμένεται να συντελέσει σε συνέργειες μεταξύ δημόσιων και ιδιωτικών φορέων στον τομέα των χρησιμοποιημένων τηγανελαίων για την διαχείρησή τους και την χρήση τους για παραγωγή βιοκαυσίμων 2ης γενιάς.

Το έργο θα αυξήσει σημαντικά την προώθηση των βιοκαυσίμων 2ης γενιάς και τις προοπτικές αυτών μέσω των παρακάτω:

  • Υιοθετώντας, ολοκληρώνοντας και υλοποιώντας νέα εργαλεία διαμόρφωσης πολιτικής
  • Σχηματίζοντας καινοτόμες στρατηγικές και σχέδια για την παραγωγή βιοκαυσίμων 2ης γενιάς που θα επιδειχθεί και στην πράξη σε αστικό περιβάλλον
  • Εκμεταλλεύοντας νέες ευκαιρίες αλλά και την αυξανόμενη ωριμότητα τόσο στο περιβάλλον των ιδρυμάτων όσο και σ’αυτό των επιχειρήσεων

Όλα τα παραπάνω θα ολοκληρωθούν, θα προσαρμοστούν και θα υλοποιηθούν ως πιλοτικές εφαρμογές στην περιοχή της Θεσσαλονίκης. Οι συνθήκες στην περιοχή είναι πλέον ώριμες, τόσο σε επίπεδο πολιτικής όσο και σε τεχνολογικό επίπεδο, στο οποίο η πρώτη ύλη θα διατίθεται από χρησιμοποιημένα τηγανέλαια.

Στο έργο το ΑΝΟΣΥΣ/ΕΚΕΤΑ είναι ο συντονιστής φορέας, ενώ συμμετέχουν το Εργαστήριο Εφαρμοσμένης Θερμοδυναμικής του ΑΠΘ, ο Δήμος Θεσσαλονίκής και η Ένωση Εστιατόρων Ψητοπωλών Θεσσαλονίκης.

  • Φορέας Χρηματοδότησης : Ευρωπαϊκή επιτροπή περιβάλλοντος, Πρόγραμμα : LIFE+
  • Ημερομηνία Έναρξης : 1/1/2010, Διάρκεια : 36 μήνες
  • Σύνολο Προϋπολογισμού : 1.416.350,00 € , ΙΤΧΗΔ : 707.337,80 €
  • Επιστημονικός Υπεύθυνος : Δρ. Σπυρίδων Βουτετάκης


¤ Περισσότερες πληροφορίες μπορείτε να βρείτε στο επίσημο site: www.biofuels2g.gr

Top

  

ΠΡΟΓΡΑΜΜΑΤΑ ΠΑΡΟΧΗΣ ΥΠΗΡΕΣΙΩΝ

Title:

Newcastle University - Courses on nonlinar effects of power DC/DC converters and their control

  • Starting Date : 01/06/2013, Finish : 31/12/2014
  • Cperi Budget : 9.346,93 €
  • Scientific coordinator : Dr. S. Voutetakis

Top 

Title:

SOLVAY - Catalyst production of ethylene via oxidative dehydrogenation of ethane

  • Starting Date : 01/02/2013, Finish : 30/07/2014
  • Cperi Budget : 85.467,50 €
  • Scientific coordinator : Dr. S. Voutetakis

Top

 

Title:

CSOLUTIONS - Development and Support of Pilot Plants Infrastructure (2008-2013)

Brief description :

This program is funded entirely by the company CSolutions Ltd and the development and maintenance of high technology systems operated by the company. In supporting the smooth operation of systems, pilot plants and staff of CSolutions is crucial that actions provided by LPSDI. Operations-work provided in regular maintenance and emergency service (emergency problems and crises).

  • Collaborating company : CSolutions Ltd
  • Starting Date : 01/12/2009, Finish : 31/12/2013
  • Cperi Budget : 364.796,26 €
  • Scientific coordinator : Dr. S. Voutetakis

Top

 

 

Σχετικά με το ΕΑΝΟΣΥΣ

Το Εργαστήριο Ανάπτυξης
Ολοκληρωμένων Συστημάτων Διεργασιών είναι ένα βασικό εργαστήριο του Ινστιτούτου Τεχνικής Χημικών Διεργασιών, το οποίο βρίσκεται στη Θεσσαλονίκη, στην Ελλάδα. Το εργαστήριό μας έχει πάρει μέρος σε πολυάριθμες ανταγωνιστικές Ευρωπαϊκές και Εθνικές έρευνες έργων και έχει αναπτύξει μοναδικές υποδομές και τεχνολογία σε Ευρωπαϊκό επίπεδο.

Τελευταία Νέα

Δραστηριότητες

  • Υποστήριξη λειτουργίας και συντήρησης πιλοτικών μονάδων και υποδομών.
  • Ολοκληρωμένα Συστήματα Παραγωγής Ενέργειας.
  • Παραγωγή ηλεκτρικής ενέργειας από Μεθανόλη.
  • Ανάπτυξη Συστημάτων Παραγωγής Υδρογόνου από Βιομάζα.

Επικοινωνία

  paris (@) cperi.certh.gr
  +30.2310498317
  +30.2310498380
  6χλμ Χαριλάου - Θέρμης, Θεσσαλονίκη, Ελλάδα